Home | << 1 >> |
![]() |
Casalino, G., Castellano, G., Hryniewicz, O., Leite, D., Opara, K., Radziszewska, W., et al. (2023). Semi-Supervised vs. Supervised Learning for Mental Health Monitoring: A Case Study on Bipolar Disorder. Int. J. Appl. Math. Comput. Sci., 33(3), 419–428.
Abstract: Acoustic features of speech are promising as objective markers for mental health monitoring. Specialized smartphone apps can gather such acoustic data without disrupting the daily activities of patients. Nonetheless, the psychiatric assessment of the patient's mental state is typically a sporadic occurrence that takes place every few months. Consequently, only a slight fraction of the acoustic data is labeled and applicable for supervised learning. The majority of the related work on mental health monitoring limits the considerations only to labeled data using a predefined ground-truth period. On the other hand, semi-supervised methods make it possible to utilize the entire dataset, exploiting the regularities in the unlabeled portion of the data to improve the predictive power of a model. To assess the applicability of semi-supervised learning approaches, we discuss selected state-of-the-art semi-supervised classifiers, namely, label spreading, label propagation, a semi-supervised support vector machine, and the self training classifier. We use real-world data obtained from a bipolar disorder patient to compare the performance of the different methods with that of baseline supervised learning methods. The experiment shows that semi-supervised learning algorithms can outperform supervised algorithms in predicting bipolar disorder episodes.
|
Mora-Rubio, A., Bravo-Ortiz, M. A., Quiñones Arredondo, S., Saborit-Torres, J. M., Ruz, G. A., & Tabares-Soto, R. (2023). Classification of Alzheimers disease stages from magnetic resonance images using deep learning. PeerJ Comput. Sci., 9, e1490.
Abstract: Alzheimers disease (AD) is a progressive type of dementia characterized by loss of memory and other cognitive abilities, including speech. Since AD is a progressive disease, detection in the early stages is essential for the appropriate care of the patient throughout its development, going from asymptomatic to a stage known as mild cognitive impairment (MCI), and then progressing to dementia and severe dementia; is worth mentioning that everyone suffers from cognitive impairment to some degree as we age, but the relevant task here is to identify which people are most likely to develop AD. Along with cognitive tests, evaluation of the brain morphology is the primary tool for AD diagnosis, where atrophy and loss of volume of the frontotemporal lobe are common features in patients who suffer from the disease. Regarding medical imaging techniques, magnetic resonance imaging (MRI) scans are one of the methods used by specialists to assess brain morphology. Recently, with the rise of deep learning (DL) and its successful implementation in medical imaging applications, it is of growing interest in the research community to develop computer-aided diagnosis systems that can help physicians to detect this disease, especially in the early stages where macroscopic changes are not so easily identified. This article presents a DL-based approach to classifying MRI scans in the different stages of AD, using a curated set of images from Alzheimer�s Disease Neuroimaging Initiative and Open Access Series of Imaging Studies databases. Our methodology involves image pre-processing using FreeSurfer, spatial data-augmentation operations, such as rotation, flip, and random zoom during training, and state-of-the-art 3D convolutional neural networks such as EfficientNet, DenseNet, and a custom siamese network, as well as the relatively new approach of vision transformer architecture. With this approach, the best detection percentage among all four architectures was around 89% for AD vs. Control, 80% for Late MCI vs. Control, 66% for MCI vs. Control, and 67% for Early MCI vs. Control.
|
Ruz, G. A., & Pham, D. T. (2012). NBSOM: The naive Bayes self-organizing map. Neural Comput. Appl., 21(6), 1319–1330.
Abstract: The naive Bayes model has proven to be a simple yet effective model, which is very popular for pattern recognition applications such as data classification and clustering. This paper explores the possibility of using this model for multidimensional data visualization. To achieve this, a new learning algorithm called naive Bayes self-organizing map (NBSOM) is proposed to enable the naive Bayes model to perform topographic mappings. The training is carried out by means of an online expectation maximization algorithm with a self-organizing principle. The proposed method is compared with principal component analysis, self-organizing maps, and generative topographic mapping on two benchmark data sets and a real-world image processing application. Overall, the results show the effectiveness of NBSOM for multidimensional data visualization.
|