Asenjo, F. A., & Hojman, S. A. (2023). Timedomain supersymmetry for massless scalar and electromagnetic fields in anisotropic cosmologies. Phys. Scr., 98(10), 105302.
Abstract: It is shown that any cosmological anisotropic model produces supersymmetric theories for both massless scalar and electromagnetic (abelian) fields. This supersymmetric theory is the timedomain analogue of a supersymmetric quantum mechanics algebra theory. In this case, the variations of the anisotropic scale factors of the Universe are responsible for triggering the supersymmetry. For scalar fields, the superpartner fields evolve in two different cosmological scenarios (Universes). On the other hand, for propagating electromagnetic fields, supersymmetry is manifested through its polarization degrees of freedom in one Universe. In this case, polarization degrees of freedom of electromagnetic waves, which are orthogonal to its propagation direction, become superpartners from each other. This behavior can be measured, for example, through the rotation of the plane of polarization of cosmological light.

Asenjo, F. A., Hojman, S. A., MoyaCessa, H. M., & SotoEguibar, F. (2022). Supersymmetric relativistic quantum mechanics in timedomain. Phys. Lett. A, 450, 128371.
Abstract: A supersymmetric relativistic quantum theory in the temporal domain is developed for bispinor fields satisfying the Dirac equation. The simplest timedomain supersymmetric theory can be postulated for fields with timedependent mass, showing an equivalence with the bosonic supersymmetric theory in timedomain. Solutions are presented and they are used to produce probability oscillations between mass states. As an application of this idea, we study the twoneutrino oscillation problem, showing that flavour state oscillations may emerge from the supersymmetry originated by the timedependence of the unique mass of the neutrino.(c) 2022 Elsevier B.V. All rights reserved.

Asenjo, F. A., Hojman, S. A., VillegasMartinez, B. M., MoyaCessa, H. M., & SotoEguibar, F. (2024). Supersymmetric behavior of polarized electromagnetic waves in anisotropic media. Mod. Phys. Lett. A, 39(06), 2450013.
Abstract: A medium with specific anisotropic refractive indices can induce a supersymmetric behavior in the propagation of polarized electromagnetic waves, in an analog fashion to a quantum mechanical system. The polarizations of the wave are the ones which behave as superpartners from each other. For this to happen, the anisotropy of the medium must be transverse to the direction of propagation of the wave, with different refractive indices along the direction of each polarization, being in this way a biaxial medium. These refractive indices must be complex and follow a very specific relation in order to trigger the supersymetric response of the electromagnetic wave, each of them with spatial dependence on the longitudinal (propagation) direction of the wave. In this form, in these materials, different polarized light can be used to test supersymmetry in an optical fashion.

Canfora, F., Gomberoff, A., Oh, S. H., Rojas, F., & SalgadoRebolledo, P. (2019). Meronic EinsteinYangMills black hole in 5D and gravitational spin from isospin effect. J. High Energy Phys., (6), 32 pp.
Abstract: We construct an analytic black hole solution in SU(2) EinsteinYangMills theory in five dimensions supporting a Meron field. The gauge field is proportional to a pure gauge and has a nontrivial topological charge. The wouldbe singularity at the Meron core gets shielded from the exterior by the black hole horizon. The metric has only one integration constant, namely, its ADM mass, which is shown to be finite once an appropriate boundary term is added to the action. The thermodynamics is also worked out, and a firstorder phase transition, similar to the one occurring in the ReissnerNordstrom case is identified. We also show that the solution produces a spin from isospin effect, i.e., even though the theory is constructed out of bosons only, the combined system of a scalar field and this background may become fermionic. More specifically, we study scalar excitations in this purely bosonic background and find that the system describes fermionic degrees of freedom at spatial infinity. Finally, for the asymptotically AdS(5) case, we study its consequences in the context of the AdS/CFT correspondence.

Chandia, O., Bevilaqua, L. I., & Vallilo, B. C. (2014). AdS pure spinor superstring in constant backgrounds. J. High Energy Phys., (6), 16 pp.
Abstract: In this paper we study the pure spinor formulation of the superstring in AdS(5) x S5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.

Cisternas, J., & Concha, A. (2024). Searching nontrivial magnetic equilibria using the deflated Newton method. Chaos Solitons Fractals, 179, 114468.
Abstract: Nonlinear systems that model physical experiments often have many equilibrium configurations, and the number of these static solutions grows with the number of degrees of freedom and the presence of symmetries. It is impossible to know a priori how many equilibria exist and which ones are stable or relevant, therefore from the modeler's perspective, an exhaustive search and symmetry classification in the space of solutions are necessary. With this purpose in mind, the method of deflation (introduced by Farrell as a modification of the classic Newton iterative method) offers a systematic way of finding every possible solution of a set of equations. In this contribution we apply deflated Newton and deflated continuation methods to a model of macroscopic magnetic rotors, and find hundreds of new equilibria that can be classified according to their symmetry. We assess the benefits and limitations of the method for finding branches of solutions in the presence of a symmetry group, and explore the high dimensional basins of attraction of the method in selected 2 dimensional sections, illustrating the effect of deflation on the convergence.

Concha, P., Merino, N., Miskovic, O., Rodriguez, E., SalgadoRebolledo, P., & Valdivia, O. (2018). Asymptotic symmetries of threedimensional ChernSimons gravity for the Maxwell algebra. J. High Energy Phys., (10), 22 pp.
Abstract: We study a threedimensional ChernSimons gravity theory based on the Maxwell algebra. We find that the boundary dynamics is described by an enlargement and deformation of the bms(3) algebra with three independent central charges. This symmetry arises from a gravity action invariant under the local Maxwell group and is characterized by presence of Abelian generators which modify the commutation relations of the supertranslations in the standard bms(3) algebra. Our analysis is based on the charge algebra of the theory in the BMS gauge, which includes the known solutions of standard asymptotically flat case. The field content of the theory is different than the one of General Relativity, but it includes all its geometries as particular solutions. In this line, we also study the stationary solutions of the theory in ADM form and we show that the vacuum energy and the vacuum angular momentum of the stationary configuration are influenced by the presence of the gravitational Maxwell field.

Donnay, L., Giribet, G., González, H., Puhm, A., & Rojas, F. (2023). Celestial open strings at oneloop. J. High Energy Phys., (10), 47.
Abstract: We study celestial amplitudes in string theory at oneloop. Celestial amplitudes describe scattering processes of boost eigenstates and relate to amplitudes in the more standard basis of momentum eigenstates through a Mellin transform. They are thus sensitive to both the ultraviolet and the infrared, which raises the question of how to appropriately take the field theory limit of string amplitudes in the celestial basis. We address this problem in the context of fourdimensional genusone scattering processes of gluons in open string theory which reach the twodimensional celestial sphere at null infinity. We show that the Mellin transform commutes with the adequate limit in the worldsheet moduli space and reproduces the celestial oneloop field theory amplitude expressed in the worldline formalism. The dependence on alpha ' continues to be a simple overall factor in oneloop celestial amplitudes albeit with a power that is shifted with respect to treelevel, thus making manifest that the dimensionless parameter g102/alpha ' 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{69pt} \begin{document}$$ {g}_{10}<^>2/{\alpha}<^>{\prime 3} $$\end{document} organizes the loop expansion in the celestial basis. The precise way in which the amplitudes scale with this parameter depends on the number of noncompact dimensions in such a way that in 4 dimensions the scaling with alpha ' does agree with that at treelevel.

Gole, C., Dumais, J., & Douady, S. (2016). Fibonacci or quasisymmetric phyllotaxis. Part I: why? Acta Soc. Bot. Pol., 85(4), 34 pp.
Abstract: The study of phyllotaxis has focused on seeking explanations for the occurrence of consecutive Fibonacci numbers in the number of helices paving the stems of plants in the two opposite directions. Using the diskaccretion model, first introduced by Schwendener and justified by modern biological studies, we observe two distinct types of solutions: the classical Fibonaccilike ones, and also more irregular configurations exhibiting nearly equal number of helices in a quasisquare packing, the quasisymmetric ones, which are a generalization of the whorled patterns. Defining new geometric tools allowing to work with irregular patterns and local transitions, we provide simple explanations for the emergence of these two states within the same elementary model. A companion paper will provide a wide array of plant data analyses that support our view.

Hojman, S. J., MoyaCessa, H. M., SotoEguibar, F., & Asenjo, F. A. (2021). Timedependent harmonic oscillators and SUSY in time domain. Phys. Scr., 96(12), 125218.
Abstract: We show that the timedependent harmonic oscillator has a repulsive or inverted oscillator as a time domain SUSYlike partner. Examples of several kinds of supersymmetrical time dependent frequency systems are presented.

Mellado, P., Concha, A., Hofhuis, K., & Tapia, I. (2023). Intrinsic chiral field as vector potential of the magnetic current in the zigzag lattice of magnetic dipoles. Sci. Rep., 13(1), 1245.
Abstract: Chiral magnetic insulators manifest novel phases of matter where the sense of rotation of the magnetization is associated with exotic transport phenomena. Effective control of such phases and their dynamical evolution points to the search and study of chiral fields like the DzyaloshinskiiMoriya interaction. Here we combine experiments, numerics, and theory to study a zigzag dipolar lattice as a model of an interface between magnetic inplane layers with a perpendicular magnetization. The zigzag lattice comprises two parallel sublattices of dipoles with perpendicular easy plane of rotation. The dipolar energy of the system is exactly separable into a sum of symmetric and antisymmetric longrange exchange interactions between dipoles, where the antisymmetric coupling generates a nonlocal DzyaloshinskiiMoriya field which stabilizes winding textures with the form of chiral solitons. The DzyaloshinskiiMoriya interaction acts as a vector potential or gauge field of the magnetic current and gives rise to emergent magnetic and electric fields that allow the manifestation of the magnetoelectric effect in the system.
