Alvarez, C., Moreno, G., Valenzuela, F., Rivera, J. I., Ebensperger, F., Reszka, P., et al. (2023). Use of an electric heater as an idealized firebrand to determine ignition delay time of Eucalyptus globulus leaves. Fire Saf. J., 141, 103923.
Abstract: The Idealized-Firebrand Ignition Test (I-FIT) protocol was used to evaluate the piloted ignition delay times of fuel beds composed of leaves of Eucalyptus globulus (Labill.). The amount of fuel layer used for evaluation ranged between the fraction volume (������) of 0.03 to 0.07 which are values expected to be found in forest bed fuels. A theoretical model was developed to describe the heating and ignition of the fuel beds, based on the thermal ignition theory. The model, which was originally developed for pine needle beds, considers the penetration of radiation to the porous matrix. The model is able to accurately predict the ignition delay time for different values of ������, but shows a poorer accuracy for the temperature evolution. This is explained by the large variability observed for the Eucalyptus leaves.
|
Araya-Letelier, G., Antico, F. C., Burbano-Garcia, C., Concha-Riedeld, J., Norambuena-Contreras, J., Concha, J., et al. (2021). Experimental evaluation of adobe mixtures reinforced with jute fibers. Constr. Build. Mater., 276(2021), 122127.
Abstract: Due to their sustainability as well as physical and mechanical performance, different natural fibers, both vegetal and animal fibers, have been successfully used in adobe mixtures (AMs) to enhance properties such as cracking control, flexural toughness and water erosion resistance, among others. However, the use of jute fibers (JFs), one of the most largely produced vegetal fiber worldwide, has not been extensively studied on AMs. Consequently, this study evaluates the effects of the incorporation of varying dosages (0.5 and 2.0 wt%) and lengths (7, 15, and 30 mm) of JFs on the physical/thermal/mechanical/fracture and durability performance of AMs, a specific type of earth-based construction material widely used globally. Experimental results showed that the incorporation of 2.0 wt% dosages of JFs increased the capillary water absorption of AMs, which might affect AM durability. The latter result could be explained by the additional porosity generated by the spaces left between the JFs and the matrix of adobe, as well as the inherent water absorption of the JFs. The incorporation of JFs significantly improved the behavior of AMs in terms of thermal conductivity, drying shrinkage cracking control, flexural toughness and water erosion performance, without affecting their compressive and flexural strength. For example, flexural toughness indices were increased by 297% and crack density ratio as well as water erosion depth values were reduced by 93% and 62%, respectively, when 2.0 wt%-15 mm length JFs were incorporated into AM. Since the latter combination of JF dosage and length provided the overall best results among AMs, it is recommended by this study as JF-reinforcement scheme for AMs for construction applications such as adobe masonry and earth plasters.
|
Avudaiappan, S., Moreno, P. I. C., Montoya, R. L. F., Chávez-Delgado, M., Arunachalam, K. P., Guindos, P., et al. (2023). Experimental investigation on the physical, microstructural, and mechanical properties of hemp limecrete. Sci. Rep., 13(1), 22650.
Abstract: This paper investigates the hemp limecrete mechanical and microstructural performance of a new sustainable and environmental friendly building material. Several studies have investigated the hemp limecrete focusing on the non-structural applications. The newly developed hemp limecrete consists of high mechanical and microstructural properties. The specimens were prepared with varying lengths and proportions of hemp fibers with lime and tested for compressive strength, flexural strength, thermal conductivity and microstructural analysis like SEM and EDS. The study found that the optimal fiber content for making mortars was between 2 and 4%. This conclusion was reached after analyzing the influence of fiber length and ratio on the properties of the mortars. The dry unit weight decreased when the fiber content was higher than 4%. In terms of strength, the study found that the flexural strength of the hemp limecrete improved with an increase in fiber ratio, but the compressive strength decreased. However, with 2% hemp fiber, compressive strengths of 3.48 MPa and above were obtained. The study also highlighted the good thermal insulation properties and dimensional stability of hemp limecrete. These findings have important implications for the use of hemp limecrete as a sustainable building material. The results suggest that hemp limecrete has the potential to be a viable alternative to conventional concrete in specific applications, particularly in areas where environmental sustainability is a priority.
|
Caceres, G., Fullenkamp, K., Montane, M., Naplocha, K., & Dmitruk, A. (2017). Encapsulated Nitrates Phase Change Material Selection for Use as Thermal Storage and Heat Transfer Materials at High Temperature in Concentrated Solar Power Plants. Energies, 10(9), 21 pp.
Abstract: In the present paper, the finite element method is used to perform an exhaustive analysis of the thermal behavior of encapsulated phase change materials (EPCMs), which includes an assessment of several materials in order to identify the best combination of PCM and shell material in terms of thermal energy storage, heat transfer rate, cost of materials, limit of pressure that they can support and other criteria. It is possible to enhance the heat transfer rate without a considerable decrease of the thermal energy storage density, by increasing the thickness of the shell. In the first examination of thermomechanical coupling effects, the technical feasibility can be determined if the EPCM dimensions are designed considering the thermal expansion and the tensile strength limit of the materials. Moreover, when a proper EPCM shell material and PCM composition is used, and compared with the current storage methods of concentrated solar power (CSP) plants, the use of EPCM allows one to enhance significantly the thermal storage, reaching more than 1.25 GJ/m(3) of energy density.
|
Calvo, R., Alamos, N., Huneeus, N., & O'Ryan, R. (2022). Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile. Energy Policy, 161, 112762.
Abstract: Residential firewood burning is the main source of PM2.5 emissions in southern and central Chile. In Chile, approximately 4000 premature deaths are observed each year due to air pollution. Mitigation policies aim to reduce dwellings' energy demand and foster cleaner but more expensive energy sources. Pre-existing energy poverty conditions are often overlooked in these policies, even though they can negatively affect the adoption of these measures. This article uses southern and central Chile as a case study to assess quantitatively different policy scenarios of PM2.5 emissions between 2017 and 2050, considering energy poverty-related effects. Results show that PM2.5 emissions will grow 16% over time under a business as usual scenario. If thermal improvement and stove/heater replacements are implemented, PM2.5 reductions depend on the scale of the policy: a 5%-6% reduction of total southern and central Chile PM2.5 emissions if only cities with Atmospheric Decontamination Plans are included; a 54%-56% reduction of PM2.5 emissions if these policies include other growing cities. Our study shows that the energy poverty effect potentially reduces the effectiveness of these measures in 25%. Consequently, if no anticipatory measures are taken, Chile's energy transition goals could be hindered and the effectiveness of mitigation policies to improve air quality significantly reduced.
|
Eswaramoorthy, N., Arulraj, A., Mangalaraja, R. V., Pitchaiya, S., & Rajaram, K. (2022). Nanoscale interfacial engineering of 1D g-C-3 N-4 enables effective and thermally stable HTL-free carbon-based perovskite solar cells with aging for 100 hours. Int. J. Energy Res., 46(14), 20194–20205.
Abstract: Carbon-based perovskite solar cells (PSCs) have exhibited unprecedented progress in the past decades, however, the deficit of open-circuit voltage and non-radiative recombination losses are the dominating limiting factors in scaling up the devices in view of commercialization. The researchers and scientists recognize the dominating factors and propose different themes to overcome the limiting factors. Among the different solutions, interfacial engineering of PSCs between the interfaces of transporting layer (electron or hole) and perovskite influences the reduction of non-radiative recombination losses with improvement in device efficiency. In this work, one-dimensional (1D) graphitic carbon nitride (g-C3N4) is synthesized through simple pyrolysis using two different mediums (ethanol and ethylene glycol). 1D g-C3N4 is interfaced between electron transport layer and perovskite absorber influences effectively in fine-tuning the work function by aligning the energy level of the fabricated mixed halide PSCs. Nanoscale engineered 1D g-C3N4 interfacial layer supports boosting the power conversion efficiency of the PSCs to 5.20% and 7.14% for tube and layered tube structures at ambient conditions. Further, the interfacial layer aids in improving thermal (tube: similar to 59.80%; layered tube: similar to 74.50%) and photostability (tube: similar to 78.65%; layered tube: similar to 87.25%) characteristics of the fabricated devices for 100 h duration at ambient conditions.
|
Feinstein, A. D., Radica, M., Welbanks, L., Murray, C. A., Ohno, K., Coulombe, L. P., et al. (2023). Early Release Science of the exoplanet WASP-39b with JWST NIRISS. Nature, Early Access.
Abstract: The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy(1-4). However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality(5-9). Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 mu m in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.
|
Fernandes, D., Pitie, F., Caceres, G., & Baeyens, J. (2012). Thermal energy storage: “How previous findings determine current research priorities”. Energy, 39(1), 246–257.
Abstract: Thermal energy storage is an expanding field within the subject of renewable energy technologies. After a listing of the different possibilities available for energy storage, this paper provides a comparison of various materials for High Temperature Thermal Energy Storage (HTTS). Several attributes and needs of each solution are listed. One in particular is using the latent heat as one of the most efficient ways to store thermal energy. The mixture of phase change material (PCM) embedded in a metal foam is optimising the thermal properties of the material for latent heat energy storage. The results of previous studies show that mechanical and thermal properties of foam were extensively studied separately. This paper highlights the potential for an advanced study of thermo-mechanical properties of metal foams embedded with PCM. (c) 2012 Elsevier Ltd. All rights reserved.
|
Fullenkamp, K., Montane, M., Caceres, G., & Araya-Letelier, G. (2019). Review and selection of EPCM as TES materials for building applications. Int. J. Sustain. Energy, 38(6), 561–582.
Abstract: In order to improve the thermal efficiency of building thermal energy storage (TES) systems, the feasibility of using encapsulated phase change materials (EPCMs) as heat storage media is analysed in this work. Specifically, the finite element method is used to perform thermal behaviour analyses of several EPCMs. These analyses include technical and economic assessments in order to identify the best combination of PCM and shell material, using as main parameters: thermal energy storage, heat transfer rate, materials cost, among others. The results show that EPCMs composed by Na2SO4 center dot 6H(2)O as PCM and covered by stainless steel highlight as TES materials.
|
Gaitan-Espitia, J. D., Bacigalupe, L. D., Opitz, T., Lagos, N. A., Timmermann, T., & Lardies, M. A. (2014). Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol., 217(24), 4379–4386.
Abstract: Environmental temperature has profound effects on the biological performance and biogeographical distribution of ectothermic species. Variation of this abiotic factor across geographic gradients is expected to produce physiological differentiation and local adaptation of natural populations depending on their thermal tolerances and physiological sensitivities. Here, we studied geographic variation in whole-organism thermal physiology of seven populations of the porcelain crab Petrolisthes violaceus across a latitudinal gradient of 3000 km, characterized by a cline of thermal conditions. Our study found that populations of P. violaceus show no differences in the limits of their thermal performance curves and demonstrate a negative correlation of their optimal temperatures with latitude. Additionally, our findings show that high-latitude populations of P. violaceus exhibit broader thermal tolerances, which is consistent with the climatic variability hypothesis. Interestingly, under a future scenario of warming oceans, the thermal safety margins of P. violaceus indicate that lower latitude populations can physiologically tolerate the ocean-warming scenarios projected by the IPCC for the end of the twenty-first century.
|
Guilera, O. M., Benitez-Llambay, P., Bertolami, M. M. M., & Pessah, M. E. (2023). Quantifying the Impact of the Dust Torque on the Migration of Low-mass Planets. Astrophys. J., 953(1), 97.
Abstract: Disk solids are critical in many planet formation processes; however, their effect on planet migration remains largely unexplored. Here we assess this important issue for the first time by building on the systematic measurements of dust torques on an embedded planet by Benitez-Llambay & Pessah. Adopting standard models for the gaseous disk and its solid content, we quantify the impact of the dust torque for a wide range of conditions describing the disk/planet system. We show that the total torque can be positive and reverse inward planet migration for planetary cores with M (p) & LSIM; 10 M (& OPLUS;). We compute formation tracks for low-mass embryos for conditions usually invoked when modeling planet formation processes. Our most important conclusion is that dust torques can have a significant impact on the migration and formation history of planetary embryos. The most important implications of our findings are as follows. (i) For nominal dust-to-gas mass ratios & epsilon; & SIME; 0.01, low-mass planets migrate outwards beyond the water ice-line if most of the mass in the solids is in particles with Stokes numbers St & SIME;0.1. (ii) For & epsilon; & GSIM; 0.02-0.05, solids with small Stokes numbers, St & SIME; 0.01, can play a dominant role if most of the mass is in those particles. (iii) Dust torques have the potential to enable low-mass planetary cores formed in the inner disk to migrate outwards and act as the seed for massive planets at distances of tens of au.
|
Kumaresan, N., Alsalhi, M. S., Karuppasamy, P., Kumar, M. P., Pandian, M. S., Arulraj, A., et al. (2023). Nitrogen implanted carbon nanosheets derived from Acorus calamus as an efficient electrode for the supercapacitor application. Mol. Catal., 538, 112978.
Abstract: Modern society's biggest challenges are affordable, clean energy production and storage. Thus, recent research aims at the discovery of novel electrode materials for enhanced energy production and storage. Herein, nitrogen-implanted carbon particles were synthesized for the first time from the Acorus Calamus for the symmetric supercapacitor application. The KOH-activated carbon particles at 750 degrees C (C-750) under a nitrogen atmosphere revealed the better structural, textural, morphological, and electrochemical performance. The BET analysis confirmed that the C-750 carbon nanoparticles tremendously enhanced the surface area of about 3551.07 m(2)/g. Further, the pore size and pore volume were obtained from BJH analysis that showed 3.70 nm and 0.51 cc/g, respectively. The high surface area along with the mesoporous nature of the C-750 sample effectively enhanced the specific capacitance to 354.44 Fg(-1) at 1 Ag-1 using a 6 M KOH electrolytic solution. Further, the enhancement of energy and power density of the C-750 was observed at about 47.2 Whkg(-1) and 16,000 Wkg(-1), respectively.
|
Lardies, M. A., Arias, M. B., Poupin, M. J., & Bacigalupe, L. D. (2014). Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects. J. Insect Physiol., 67, 70–75.
Abstract: Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage. (C) 2014 Elsevier Ltd. All rights reserved.
|
Martinez, C., Briones, F., Rojas, P., Aguilar, C., Guzman, D., & Ordonez, S. (2017). Microstructural and mechanical characterization of copper, nickel, and Cu-based alloys obtained by mechanical alloying and hot pressing. Mater. Lett., 209, 509–512.
Abstract: Mechanical alloying and uniaxial compaction were used to obtain configurations of: elemental powders of Cu and Ni; binary alloys (Cu-Ni and Cu-Zr); and a ternary alloy (Cu-Ni-Zr) under the same mechanical milling and hot pressing conditions. Microstructure and mechanical properties of these were investigated. According to XRD results, hot pressing process increases crystallite size and decreases microstrain in the compact samples, due to the release of crystalline defects without crystallization of amorphous alloys. The milled powder samples have a higher hardness than the unmilled samples, since crystal defects are incorporated into microstructural refinement during milling. The ternary alloy Cu-40Ni-10Zr had the highest hardness of all systems studied, reaching 689 HV0.5. Compression tests at 5% strain determined that Zr-containing samples (amorphous phase) become more fragile after processing, and have the lowest values of compressive strength. In contrast, Ni samples and Cu-Ni binary alloys are more resistant to compression. (
|
Montane, M., Caceres, G., Villena, M., & O'Ryan, R. (2017). Techno-Economic Forecasts of Lithium Nitrates for Thermal Storage Systems. Sustainability, 9(5), 15 pp.
Abstract: Thermal energy storage systems (TES) are a key component of concentrated solar power (CSP) plants that generally use a NaNO3/KNO3 mixture also known as solar salt as a thermal storage material. Improvements in TES materials are important to lower CSP costs, increase energy efficiency and competitiveness with other technologies. A novel alternative examined in this paper is the use of salt mixtures with lithium nitrate that help to reduce the salt's melting point and improve thermal capacity. This in turn allows the volume of materials required to be reduced. Based on data for commercial plants and the expected evolution of the lithium market, the technical and economic prospects for this alternative are evaluated considering recent developments of Lithium Nitrates and the uncertain future prices of lithium. Through a levelized cost of energy (LCOE) analysis it is concluded that some of the mixtures could allow a reduction in the costs of CSP plants, improving their competitiveness.
|
Montane, M., Ruiz-Valero, L., Labra, C., Faxas-Guzman, J. G., & Girard, A. (2021). Comparative energy consumption and photovoltaic economic analysis for residential buildings in Santiago de Chile and Santo Domingo of the Dominican Republic. Renew. Sust. Energ. Rev., 146, 111175.
Abstract: This research compares the building energy consumption and the photovoltaic economic analysis between residential buildings in Santiago de Chile and Santo Domingo of the Dominican Republic. The methodology considered thermal simulation, sizing of a solar PV system, an economic analysis and CO2 emissions given the solar resources of both countries. A scenario where the constructive systems are switched between the countries was also analyzed. A comparison of the energy performances of the houses exposed to other climate conditions. Results show that housing in Santiago de Chile required less energy than housing in Santo Domingo due to the fact that the thermal transmittance of the enclosures of the Chilean housing has better thermal behavior, compared to the materials of the Dominican housing. Dominican houses need a higher amount of electricity for air cooling due to the high temperatures in the tropic. Meanwhile, Chilean countries requires a higher amount of gas for heating purposes. The Dominican Republic lacks thermal regulation for construction material, and applying Chilean standards in Dominican houses, helped to lower the yearly electricity demand by 19%. Dominican constructions materials improvement could have an important impact in the country's overall goal to lower CO2 emission and in-house energy savings. The economic analysis showed that the Dominican Republic renewable energies incentives contribute to the development of very attractive PV projects, meanwhile in Chile, the use of net metering instead of net billing could increase by 11 times the net present value of PV projects.
|
Murphy, M. M., Beatty, T. G., Roman, M. T., Malsky, I., Wingate, A., Ochs, G., et al. (2023). A Lack of Variability between Repeated Spitzer Phase Curves of WASP-43b. Astron. J., 165(3), 107.
Abstract: Though the global atmospheres of hot Jupiters have been extensively studied using phase curve observations, the level of time variability in these data is not well constrained. To investigate possible time variability in a planetary phase curve, we observed two full-orbit phase curves of the hot Jupiter WASP-43b at 4.5 mu m using the Spitzer Space Telescope, and reanalyzed a previous 4.5 mu m phase curve from Stevenson et al. We find no significant time variability between these three phase curves, which span timescales of weeks to years. The three observations are best fit by a single phase curve with an eclipse depth of 3907 +/- 85 ppm, a dayside-integrated brightness temperature of 1479 +/- 13 K, a nightside integrated brightness temperature of 755 +/- 46 K, and an eastward-shifted peak of 10.degrees 4 +/- 1.degrees 8. To model our observations, we performed 3D general circulation model simulations of WASP-43b with simple cloud models of various vertical extents. In comparing these simulations to our observations, we find that WASP-43b likely has a cloudy nightside that transitions to a relatively cloud-free dayside. We estimate that any change in WASP-43b's vertical cloud thickness of more than three pressure scale heights is inconsistent with our observed upper limit on variation. These observations, therefore, indicate that WASP-43b's clouds are stable in their vertical and spatial extent over timescales up to several years. These results strongly suggest that atmospheric properties derived from previous, single Spitzer phase curve observations of hot Jupiters likely show us the equilibrium properties of these atmospheres.
|
Navarro, A., Favereau, M., Lorca, A., Olivares, D., & Negrete-Pincetic, M. (2024). Medium-term stochastic hydrothermal scheduling with short-term operational effects for large-scale power and water networks. Appl. Energy, 358, 122554.
Abstract: The high integration of variable renewable sources in electric power systems entails a series of challenges inherent to their intrinsic variability. A critical challenge is to correctly value the water available in reservoirs in hydrothermal systems, considering the flexibility that it provides. In this context, this paper proposes a medium -term multistage stochastic optimization model for the hydrothermal scheduling problem solved with the stochastic dual dynamic programming algorithm. The proposed model includes operational constraints and simplified mathematical expressions of relevant operational effects that allow more informed assessment of the water value by considering, among others, the flexibility necessary for the operation of the system. In addition, the hydrological uncertainty in the model is represented by a vector autoregressive process, which allows capturing spatio-temporal correlations between the different hydro inflows. A calibration method for the simplified mathematical expressions of operational effects is also proposed, which allows a detailed shortterm operational model to be correctly linked to the proposed medium -term linear model. Through extensive experiments for the Chilean power system, the results show that the difference between the expected operating costs of the proposed medium -term model, and the costs obtained through a detailed short-term operational model was only 0.1%, in contrast to the 9.3% difference obtained when a simpler base model is employed. This shows the effectiveness of the proposed approach. Further, this difference is also reflected in the estimation of the water value, which is critical in water shortage situations.
|
Navarro, J. M., Duarte, C., Manriquez, P. H., Lardies, M. A., Torres, R., Acuna, K., et al. (2016). Ocean warming and elevated carbon dioxide: multiple stressor impacts on juvenile mussels from southern Chile. ICES J. Mar. Sci., 73(3), 764–771.
Abstract: The combined effect of increased ocean warming and elevated carbon dioxide in seawater is expected to have significant physiological and ecological consequences at many organizational levels of the marine ecosystem. In the present study, juvenile mussels Mytilus chilensis were reared for 80 din a factorial combination of two temperatures (12 and 16 degrees C) and three pCO(2) levels (380, 700, and 1000 μatm). We investigated the combined effects of increasing seawater temperature and pCO(2) on the physiological performance (i.e. feeding, metabolism, and growth). Lower clearance rate (CR) occurred at the highest pCO(2) concentration (1000 μatm) compared with the control (380 μatm) and with the intermediate concentration of pCO(2) (700 μatm). Conversely, CR was significantly higher at 16 degrees C than at 12 degrees C. Significant lower values of oxygen uptake were observed in mussels exposed to 1000 μatm pCO(2) level compared with those exposed to 380 μatm pCO(2). Scope for growth (SFG) was significantly lower at the highest pCO(2) concentration compared with the control. Mussels exposed to 700 μatm pCO(2) did not show significantly different SFG from the other two pCO(2) treatments. SFG was significantly higher at 16 degrees C than at 12 degrees C. This might be explained because the experimental mussels were exposed to temperatures experienced in their natural environment, which are within the range of thermal tolerance of the species. Our results suggest that the temperature rise within the natural range experienced by M. chilensis generates a positive effect on the processes related with energy gain (i.e. feeding and absorption) to be allocated to growth. In turn, the increase in the pCO(2) level of 1000 μatm, independent of temperature, adversely affects this species, with significantly reduced energy allocated to growth (SFG) compared with the control treatment.
|
Parrado, C., Caceres, G., Bize, F., Bubnovich, V., Baeyens, J., Degreve, J., et al. (2015). Thermo-mechanical analysis of copper-encapsulated NaNO3-KNO3. Chem. Eng. Res. Des., 93, 224–231.
Abstract: The present paper presents a numerical study to investigate and assess the heat transfer behavior of a copper and salt composite. A mixture of nitrates, KNO3-NaNO3, within a deformable spherical shell coating of copper will be used as an encapsulated phase change material, E-PCM. In the context of a thermo-mechanical analysis of this E-PCM, a simulation is proposed to determine its storage capacity and properties The melting, or solidification of the encapsulated PCM particles do not provoke cracking of the deformable shell. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
|