|
Baraneedharan, P., Shankari, D., Arulraj, A., Sephra, P. J., Mangalaraja, R. V., & Khalid, M. (2023). Nanoengineering of MXene-Based Field-Effect Transistor Gas Sensors: Advancements in Next-Generation Electronic Devices. J. Electrochem. Soc., 180(10), 107501.
Abstract: In recent years, Two-Dimensional (2D) materials have gained significant attention for their distinctive physical and chemical properties, positioning them as promising contenders for the next generation of electronic technologies. One notable group within these materials is MXenes, which have exhibited remarkable breakthroughs across various technological domains, including catalysis, renewable energy, electronics, sensors, fuel cells, and supercapacitors. By making subtle modifications to the surface termination, introducing metal ions, precise etching timing, and applying surface functionalization, the characteristics of MXenes can be fine-tuned to achieve desired band structures, rendering them suitable for sensor design. This review focuses on the strategic development of gas sensors based on Field-Effect Transistors (FETs), thoroughly examining the latest progress in MXene-based material design and addressing associated challenges and future prospects. The review aims to provide a comprehensive overview of MXene, summarizing its current applications and advancements in FET-based gas sensing.
|
|
|
Chavez-Vásconez, R., Arévalo, C., Torres, Y., Reyes-Valenzuela, M., Sauceda, S., Salvo, C., et al. (2023). Understanding the synergetic effects of mechanical milling and hot pressing on bimodal microstructure and tribo-mechanical behavior in porous Ti structures. J. Mater. Res. Technol., 27, 5243–5256.
Abstract: The utilization of porous biomedical implants featuring a bimodal microstructure has garnered substantial interest within the scientific community. This study delves into the intricate interplay between processing parameters, microstructural attributes, and the tribo-mechanical performance of titanium grade 4, showcasing its potential to serve as implants to address compromised cortical bone tissue. The investigation meticulously examines the impact of milling duration (10 and 20 h), proportion of milled powder (50 and 75 wt%), and the volume fraction of space-holding agents (40-60 vol% NaCl) on the resulting characteristics of the bimodal microstructure, which plays a crucial role in achieving optimal biomechanical equilibrium. The Vickers microhardness, conventional and instrumented (P-h curves), and the wear behavior (ball-on disk) are discussed in terms of bimodal microstructure distribution, particle size and porosity level inherent to the fabrication conditions (mechanical milling + space-holder + hot-pressing). In general terms, milling time and milled powder fraction were the most influent parameters on the final properties of the materials. With the processing route used, the achieved microhardness values and wear behavior are comparable with those obtained by means of surface modifications or alloys. The Young's moduli obtained were in the range of 30-50 GPa, which could help to reduce the shielding phenomenon, while presenting a good mechanical resistance and wear behavior. In light of these findings, the fabricated specimen, composed of 75 wt% milled powder subjected to a 10-h milling duration, supplemented by a 60 vol% fraction of NaCl, emerges as a prime candidate manifesting superior biomechanical equilibrium. This judicious configuration exhibits a promising trajectory for its application in bone replacement endeavors.
|
|
|
Guzman, D., Garcia, C., Soliz, A., Sepulveda, R., Aguilar, C., Rojas, P., et al. (2018). Synthesis and Electrochemical Properties of Ti-Si Alloys Prepared by Mechanical Alloying and Heat Treatment. Metals, 8(6), 417.
Abstract: The aim of this work was to study the synthesis and electrochemical properties of Ti 2 wt %-Si alloys prepared by mechanical alloying (MA) and heat treatment. The MA process was performed under Ar atmosphere. The structural, morphological, and compositional evolutions during the milling and subsequent heat treatment were investigated by X-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. The electrochemical behavior was evaluated by open circuit potential and linear sweep voltammetry measurements. The results showed that the MA process promotes the formation of a supersaturated alpha-Ti-Si solid solution. During heat treatment, the Si remaining in the mechanically alloyed powders and the Si from the alpha-Ti-Si supersaturated solid solution reacted with Ti to form Ti-Si intermetallic compounds. These compounds have a fine and homogeneous distribution in the alpha-Ti matrix, which cannot be achieved by conventional casting methods. Additionally, the electrochemical evaluations revealed that the mechanically alloyed and heat-treated Ti 2 wt %-Si powders have better corrosion resistance in 1.63 M H2SO4 than the pure Ti and MA Ti-Si samples. This is likely due to the particular microstructure produced during the milling and subsequent heat treatment.
|
|