Home | << 1 >> |
![]() |
Arias, M. B., Poupin, M. J., & Lardies, M. A. (2011). Plasticity of life-cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: Effect of temperature variability. J. Therm. Biol., 36(6), 355–362.
Abstract: It is considered that extreme environmental temperature, rather than mean temperatures exert a selective pressure in ectotherms. Consequently, it is important to understand how the predicted increase in temperature variance with a higher frequency of extreme events in climate change is likely to impact on organisms. Thermal tolerance traits (i.e. chill-coma, recovery time, Hsp70 expression) are directly linked with performance in ectotherms and have consequences in life-history traits. We examined the effects of temperature variability on thermal tolerance and life-history traits through ontogeny of an insect with a complex life-cycle: the yellow mealworm beetle Tenebrio molitor. We established two common gardens with 100 recently ovoposited eggs each. Larvae were reared from hatching to adult on either a variable (mean=18 degrees C and a variance of 6.8 degrees C) or constant (18 +/- 1 degrees C) thermal environment. Development rate and growth rate were similar between thermal environments. Results indicate that larvae reared in a variable environment are more cold-tolerant than larvae of a constant environment. Interestingly, these results are reversed in the adult stage, outlining an inter-stage physiological cost. Gene expression pattern of an Hsp70 gene was well correlated with larval thermotolerance to cold in the variable environment but higher gene expression in adults is not correlated with individual's thermotolerance. We conclude that chill-coma, recovery time and Hsp70 gene expression are plastic in response to a thermal environment but also change significantly their responses depending on the ontogenetic stage, implying that the response of adult individuals is linked to early stages of the life-cycle. (C) 2011 Elsevier Ltd. All rights reserved,
|
Gaitan-Espitia, J. D., Bacigalupe, L. D., Opitz, T., Lagos, N. A., Timmermann, T., & Lardies, M. A. (2014). Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol., 217(24), 4379–4386.
Abstract: Environmental temperature has profound effects on the biological performance and biogeographical distribution of ectothermic species. Variation of this abiotic factor across geographic gradients is expected to produce physiological differentiation and local adaptation of natural populations depending on their thermal tolerances and physiological sensitivities. Here, we studied geographic variation in whole-organism thermal physiology of seven populations of the porcelain crab Petrolisthes violaceus across a latitudinal gradient of 3000 km, characterized by a cline of thermal conditions. Our study found that populations of P. violaceus show no differences in the limits of their thermal performance curves and demonstrate a negative correlation of their optimal temperatures with latitude. Additionally, our findings show that high-latitude populations of P. violaceus exhibit broader thermal tolerances, which is consistent with the climatic variability hypothesis. Interestingly, under a future scenario of warming oceans, the thermal safety margins of P. violaceus indicate that lower latitude populations can physiologically tolerate the ocean-warming scenarios projected by the IPCC for the end of the twenty-first century.
|
Lardies, M. A., Arias, M. B., Poupin, M. J., & Bacigalupe, L. D. (2014). Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects. J. Insect Physiol., 67, 70–75.
Abstract: Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage. (C) 2014 Elsevier Ltd. All rights reserved.
|