|
Gordon, M. A., Vargas, F. J., & Peters, A. A. (2021). Comparison of Simple Strategies for Vehicular Platooning With Lossy Communication. IEEE Access, 9, 103996–104010.
Abstract: This paper studies vehicle platooning with communication channels subject to random data loss. We focus on homogeneous discrete-time platoons in a predecessor-following topology with a constant time headway policy. We assume that each agent in the platoon sends its current position to the immediate follower through a lossy channel modeled as a Bernoulli process. To reduce the negative effects of data loss over the string stability and performance of the platoon, we use simple strategies that modify the measurement, error, and control signals of the feedback control loop, in each vehicle, when a dropout occurs. Such strategies are based on holding the previous value, dropping to zero, or replacing with a prediction based on a simple linear extrapolation. We performed a simulation-based comparison among a set of different strategies, and found that some strategies are favorable in terms of performance, while some others present improvements for string stabilization. These results strongly suggest that proper design of compensation schemes for the communications of interconnected multi-agent systems plays an important role in their performance and their scalability properties.
|
|
|
Ruz, G. A., Goles, E., Montalva, M., & Fogel, G. B. (2014). Dynamical and topological robustness of the mammalian cell cycle network: A reverse engineering approach. Biosystems, 115, 23–32.
Abstract: A common gene regulatory network model is the threshold Boolean network, used for example to model the Arabidopsis thaliana floral morphogenesis network or the fission yeast cell cycle network. In this paper, we analyze a logical model of the mammalian cell cycle network and its threshold Boolean network equivalent. Firstly, the robustness of the network was explored with respect to update perturbations, in particular, what happened to the attractors for all the deterministic updating schemes. Results on the number of different limit cycles, limit cycle lengths, basin of attraction size, for all the deterministic updating schemes were obtained through mathematical and computational tools. Secondly, we analyzed the topology robustness of the network, by reconstructing synthetic networks that contained exactly the same attractors as the original model by means of a swarm intelligence approach. Our results indicate that networks may not be very robust given the great variety of limit cycles that a network can obtain depending on the updating scheme. In addition, we identified an omnipresent network with interactions that match with the original model as well as the discovery of new interactions. The techniques presented in this paper are general, and can be used to analyze other logical or threshold Boolean network models of gene regulatory networks. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
|
|