|
Elangovan, K., Saravanan, P., Campos, C. H., Sanhueza-Gómez, F., Khan, M. M. R., Chin, S. Y., et al. (2023). Outline of microbial fuel cells technology and their significant developments, challenges, and prospects of oxygen reduction electrocatalysts. Front. Chem. Eng., 5, 1228510.
Abstract: The microbial fuel cells (MFCs) which demonstrates simultaneous production of electricity and wastewater treatment have been considered as one of the potential and greener energy production technology among the available bioelectrochemical systems. The air-cathode MFCs have gained additional benefits due to using air and avoiding any chemical substances as catholyte in the cathode chamber. The sluggish oxygen reduction reaction (ORR) kinetics at the cathode is one of the main obstacles to achieve high microbial fuel cell (MFC) performances. Platinum (Pt) is one of the most widely used efficient ORR electrocatalysts due to its high efficient and more stable in acidic media. Because of the high cost and easily poisoned nature of Pt, several attempts, such as a combination of Pt with other materials, and using non-precious metals and non-metals based electrocatalysts has been demonstrated. However, the efficient practical application of the MFC technology is not yet achieved mainly due to the slow ORR. Therefore, the review which draws attention to develop and choosing the suitable cathode materials should be urgent for the practical applications of the MFCs. In this review article, we present an overview of the present MFC technology, then some significant advancements of ORR electrocatalysts such as precious metals-based catalysts (very briefly), non-precious metals-based, non-metals and carbon-based, and biocatalysts with some significant remarks on the corresponding results for the MFC applications. Lastly, we also discussed the challenges and prospects of ORR electrocatalysts for the practical application of MFCs.
|
|
|
Fra-Vazquez, A., Morales, N., Figueroa, M., del Rio, A. V., Regueiro, L., Campos, J. L., et al. (2016). Bacterial community dynamics in long-term operation of a pilot plant using aerobic granular sludge to treat pig slurry. Biotechnol. Prog., 32(5), 1212–1221.
Abstract: Aerobic granular sludge represents an interesting approach for simultaneous organic matter and nitrogen removal in wastewater treatment plants. However, the information about microbial communities in aerobic granular systems dealing with industrial wastewater like pig slurry is limited. Herein, bacterial diversity and dynamics were assessed in a pilot scale plant using aerobic granular sludge for organic matter and nitrogen elimination from swine slurry during more than 300 days. Results indicated that bacterial composition evolved throughout the operational period from flocculent activated sludge, used as inoculum, to mature aerobic granules. Bacterial diversity increased at the beginning of the granulation process and then declined due to the application of transient organic matter and nitrogen loads. The operational conditions of the pilot plant and the degree of granulation determined the microbial community of the aerobic granules. Brachymonas, Zoogloea and Thauera were attributed with structural function as they are able to produce extracellular polymeric substances to maintain the granular structure. Nitrogen removal was justified by partial nitrification (Nitrosomonas) and denitrification (Thauera and Zoogloea), while Comamonas was identified as the main organic matter oxidizing bacteria. Overall, clear links between bacterial dynamics and composition with process performance were found and will help to predict their biological functions in wastewater ecosystems improving the future control of the process. (c) 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1212-1221, 2016
|
|
|
Pedrouso, A., Morales, N., Rodelas, B., Correa-Galeote, D., del Rio, A. V., Campos, J. L., et al. (2023). Rapid start-up and stable maintenance of the mainstream nitritation process based on the accumulation of free nitrous acid in a pilot-scale two-stage nitritation-anammox system. Sep. Purif. Technol., 317, 123851.
Abstract: Two-stage partial nitritation (PN) and anammox (AMX) systems showed promising results for applying auto-trophic nitrogen removal under mainstream conditions. In this study, a pilot-scale (600 L per reactor) two-stage PN/AMX system was installed in a municipal wastewater treatment plant (WWTP) provided with a high-rate activated sludge (HRAS) system for organic carbon removal. The PN/AMX system was operated without tem-perature control (ranging from 11 to 28 degrees C) and was subjected to the same variations in wastewater charac-teristics as the WWTP (22 to 63 mg NH4+- N/L). The developed strategy is simple, does not require the addition of chemicals and is characterised by short start-up periods. The PN process was established by applying a high hydraulic load and maintained by in situ accumulated free nitrous acid (FNA) of 0.015-0.2 mg HNO2-N/L. Based on pH value, a controlled aeration strategy was applied to achieve the target nitrite to ammonium ratio in the effluent (1.1 g NO2--N/g NH4+-N) to feed the AMX reactor. Although NOB were not fully washed out from the system, nitrite accumulation remained (>99 %) stable with no evidence of NOB activity. In the AMX reactor, an overall nitrogen removal efficiency of 80 % was achieved. Regarding effluent quality, 12 +/- 3 mg TN/L was obtained, but 5 mg NO3--N/L was already in the HRAS effluent. The relative abundance of NOB showed a strong negative correlation with the FNA concentration, providing a good strategy for establishing PN under main-stream conditions.
|
|
|
Pina, S., Sandoval, A. M., Jara-Ulloa, P., Contreras, D., Hassan, N., Coreno, O., et al. (2022). Nanostructured electrochemical sensor applied to the electrocoagulation of arsenite in WWTP effluent. Chemosphere, 306, 135530.
Abstract: A sensitive electroanalytical method for the determination of arsenite, based on a heterostructure of aminated multiwalled carbon nanotubes and gold nanoparticles, was applied in an electrocoagulation (EC) treatment for the elimination of arsenite. A sensitive quantitative response was obtained in the determination of As3+ in a secondary effluent from a wastewater treatment plant from Santiago (Chile). The preconcentration stage was optimized through a Central Composite Face design, and the most sensitive peak current was obtained at 200 s and -600 mV of time and accumulation potential, respectively, after a differential pulse voltammetry sweep. Electroanalytical determination was possible in an interval between 42.89 and 170.00 mu g L-1 with a detection limit of 0.39 mu g L-1, obtaining recoveries over 99.1%. The developed method was successfully applied in an electrocoagulation treatment to remove 250 mu g L-1 of arsenite from a polluted effluent in a batch system. Complete arsenite removal was achieved using a steel EC system with a current density of 6.0 mA cm(-2) in less than 3 min of treatment.
|
|
|
Sepulveda-Mardones, M., Campos, J. L., Magri, A., & Vidal, G. (2019). Moving forward in the use of aerobic granular sludge for municipal wastewater treatment: an overview. Rev. Environ. Sci. Bio-Technol., 18(4), 741–769.
Abstract: Activated sludge is one of the most widely implemented technologies for municipal wastewater treatment. Yet, more restrictive environmental standards demand for more efficient technologies. Aerobic granular sludge (AGS) is a promising alternative in this context since this technology has shown potential for simultaneous organic matter and nutrient removal using smaller bioreactors and consuming less energy. However, despite such engaging claims, only ca. 40 full-scale AGS systems have been installed worldwide after 30 years of development. This reduced implementation suggests the existence of significant bottlenecks for this technology, which currently only have partially been overcome. This overview aims to analyze the recent progress in R&D concerning aerobic sludge granulation for municipal wastewater treatment via the analysis of research articles and invention patents as well as to elucidate exiting technological gaps and development opportunities. Culturing methods aiming at fast granulation, long-term stability and excellent process performance are of utmost interest for promoting massive implementation of full-scale AGS systems. Moreover, the recovery of biomaterials from waste sludge could contribute to the implementation of the biorefinery paradigm in wastewater treatment plants.
|
|
|
Vergara, C., Munoz, R., Campos, J. L., Seeger, M., & Jeison, D. (2016). Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int. Biodeterior. Biodegrad., 114, 116–121.
Abstract: The influence of irradiance on the nitrifying activity in photobioreactors of a bacterial consortium enriched from a wastewater treatment bioreactor was assessed using independent ammonium oxidation kinetic batch tests and respirometric assays. Culture irradiance below 250 μmol m(-2) s(-1) did not show a significant effect on nitrification activity, while irradiance at 500 and 1250 μmol m(-2) s(-1) caused a decrease of 20 and 60% in the specific total ammonium nitrogen removal rates and a reduction of 26 and 71% in the specific NO3- production rates, respectively. However, no significant influence of irradiance on the affinity constant of NH4+ oxidation was observed. The increasing nitrite accumulation at higher light intensities suggested a higher light sensitivity of nitrite oxidizers. Additionally, NH4+ oxidation respirometric assays showed a decrease in the oxygen uptake of 14 and 50% at 500 and 1250 μmol m(-2) s(-1), respectively. The experimental determination of the light extinction coefficient (lambda) of the nitrifying bacterial consortium (lambda = 0.0003 m(2) g(-1)) and of Chlorella sorokiniana (lambda = 0.1045 m(2) g(-1)) allowed the estimation of light penetration in algal-bacterial high rate algal ponds, which showed that photo inhibition of nitrifying bacteria can be significantly mitigated in the presence of high density microalgal cultures. 2016 Elsevier Ltd. All rights reserved.
|
|