Guzman, D., Aguilar, C., Rojas, P., Criado, J. M., Dianez, M. J., Espinoza, R., et al. (2019). Production of Ag-ZnO powders by hot mechanochemical processing. T. Nonferr. Metal. Soc., 29(2), 365–373.
Abstract: Ag-CdO composites are still one of the most commonly used electrical contact materials in low-voltage applications owing to their excellent electrical and mechanical properties. Nevertheless, considering the restriction on using Cd due to its toxicity, it is necessary to find alternative materials that can replace these composites. In this study, the synthesis of Ag-ZnO alloys from Ag-Zn solid solutions was investigated by hot mechanochemical processing. The hot mechanochemical processing was conducted in a modified attritor mill at 138 degrees C under flowing O-2 at 1200 cm(3)/min for 3.0 h. The microstructure and phase evolution were investigated using X-ray diffractometry, field emission gun scanning electron microscopy and transmission electron microscopy. The results suggest that it is possible to complete the oxidation of Ag-Zn solid solution by hot mechanochemical processing at a low temperature and short time. This novel synthesis route can produce Ag-ZnO composites with a homogeneous distribution of nanoscale ZnO precipitates, which is impossible to achieve using the conventional material processing methods. Considering the fact that the fundamental approach to improving electric contact material performance resides in obtaining uniform dispersion of the second-phase in the Ag matrix, this new processing route could open the possibility for Ag-ZnO composites to replace non-environmentally friendly Ag-CdO.
|
Pandiyarajan, T., Mangalaraja, R. V., Karthikeyan, B., Arulraj, A., & Gracia-Pinilla, M. A. (2023). Fabrication and spectroscopic investigation of sandwich-like ZnO:rGO:ZnO: rGO:ZnO structure by layer-by-layer approach. Inorg. Chem. Commun., 149, 110383.
Abstract: Transparent conducting materials (TCMs) are the heart of modern optoelectronic industries and the properties of TCMs could be improved by the introduction of 2D carbon materials. In this report, the influence of order layering on microstructural, transparency and emission characteristics of ZnO:rGO:ZnO:rGO:ZnO and rGO:ZnO: rGO:ZnO:rGO sandwich structures has been investigated. The layer-by-layer approach has been adopted for the fabrication of sandwich structured materials ZnO:rGO:ZnO:rGO:ZnO and rGO:ZnO:rGO:ZnO:rGO through the spin coating technique. The sandwich structures of ZnO and rGO exhibited hexagonal wurtzite structure of ZnO without any impurities were identified through XRD. The ordering of layer's influenced the microstructural parameters and were significantly altered. The spherical nature of the particles and the formation of the sand-wich structures were confirmed by using SEM micrograph. The reduction in an optical transparency and nar-rowing bandgap of the ZnO upon the order of layering were identified through transmission spectra. The lower energy shift of near band edge (NBE) emission and reduction in the emission intensity with respect to pure ZnO nanostructures was observed. The present work provides a simple layer-by-layer approach to fabricating sand-wich structures and improving the optical properties which have potential applications in various optoelectronic devices.
|
Pugazhenthiran, N., Sathishkumar, P., Albormani, O., Murugesan, S., Kandasamy, M., Selvaraj, M., et al. (2023). Silver nanoparticles modified ZnO nanocatalysts for effective degradation of ceftiofur sodium under UV-vis light illumination. Chemosphere, 313, 137515.
Abstract: Light-induced photocatalytic degradation of ceftiofur sodium (CFS) has been assessed in the presence of plas-monic zinc oxide nanostructures (ZnONSTs), like, ZnO nanoparticles, ZnO nanorods (ZnONRs) and ZnO nano -flowers (ZnONFs). Silver nanoparticles (Ag NPs) loaded ZnO nanostructures (Ag-ZnONSTs) are obtained through seed-assisted chemical reaction followed by chemical reduction of silver. The surface modification of ZnO nanostructures by Ag NPs effectually altered their optical properties. Further, the surface plasmonic effect of Ag NPs facilitates visible light absorption by ZnONSTs and improved the photogenerated electron and hole separation, which makes the ZnONSTs a more active photocatalyst than TiO2 (P25) nanoparticles. Especially, Ag-ZnONRs showed higher CFS oxidation rate constant (k' = 4.6 x 10-4 s-1) when compared to Ag-ZnONFs (k' = 2.8 x 10-4 s-1) and Ag-ZnONPs (k' = 2.5 x 10-4 s-1), owing to their high aspect ratio (60:1). The unidirectional transport of photogenerated charge carriers on the Ag-ZnONRs may be accountable for the observed high photocatalytic oxidation of CFS. The photocatalytic oxidation of CFS mainly proceeds through center dot OH radicals generated on the Ag-ZnONRs surface under light illumination. In addition, heterogeneous activation of perox-ymonosulfate by Ag-ZnONRs accelerates the rate of photocatalytic mineralization of CFS. The quantification of oxidative radicals supports the proposed CFS oxidation mechanism. Stability studies of plasmonic Ag-ZnONSTs strongly suggests that it could be useful to clean large volume of pharmaceutical wastewater under direct solar light irradiation.
|
Sahlevani, S. F., Pandiyarajan, T., Arulraj, A., Valdes, H., Sanhueza, F., Contreras, D., et al. (2024). Tailored engineering of rod-shaped core@shell ZnO@CeO2 nanostructures as an optical stimuli-responsive in sunscreen cream. Mater. Today Commun., 38, 107959.
Abstract: The catalytic efficiency of the materials can be boosted with the selective designing (nanostructures) including the core@shell which aids in attaining the separation of photoinduced charge carriers. However, to effectively separate the carriers and reduce the rate of recombination, tuning the thickness of the shell wall is a vital one. The one-dimensional (1D) rod-like shell wall-controlled ZnO@CeO2 core@shell structures were successfully prepared via co-precipitation and hydrothermal methods using the hexamethylenetetramine (HMTA) as a reagent. The CeO2 shell wall thickness was fine-tuned between 15 and 70 nm with a variation in the concentration of HMTA reagent. The results revealed that the concentration of HMTA played a significant role in the formation of ZnO@CeO2 core@shell structures and in tuning their thickness. The FE-SEM images evidenced the core-shell structures formation with the specific thickness and uniformity. The HR-TEM images confirmed the homogeneity and regular form of the shell thickness. The unit cell and crystallite size were identified from the XRD analysis. The constructed core-shell structures were further employed in the formula of the prototypes of sunscreen and their photoprotective performance was analyzed in the view to cut the solar light irradiation in a new sunscreen formulation. The developed core-shell ZnO@CeO2 structures showed the excellent optical absorption in both the UV as well as visible regions.
|