|
Campos, J. L., Crutchik, D., Franchi, O., Pavissich, J. P., Belmonte, M., Pedrouso, A., et al. (2019). Nitrogen and Phosphorus Recovery From Anaerobically Pretreated Agro-Food Wastes: A Review. Front. Sustain. Food Syst., 2, 11 pp.
Abstract: Anaerobic digestion (AD) is commonly used for the stabilization of agro-food wastes and recovery of energy as methane. Since AD removes organic C but not nutrients (N and P), additional processes to remove them are usually applied to meet the stringent effluent criteria. However, in the past years, there was a shift from the removal to the recovery of nutrients as a result of increasing concerns regarding limited natural resources and the importance given to the sustainable treatment technologies. Recovering N and P from anaerobically pretreated agro-food wastes as easily transportable and marketable products has gained increasing importance to meet both regulatory requirements and increase revenue. For this reason, this review paper gives a critical comparison of the available and emerging technologies for N and P recovery from AD residues.
|
|
|
Contreras, J., Lopez, D., Gomez, G., & Vidal, G. (2022). Seasonal Enhancement of Nitrogen Removal on Domestic Wastewater Treatment Performance by Partially Saturated and Saturated Hybrid Constructed Wetland. Water, 14(7), 1089.
Abstract: The aim of this study is to evaluate seasonal enhancement of nitrogen removal on domestic wastewater treatment performance by partially saturated and saturated HBCWs. To achieve this, two HBCWs consisting of a vertical subsurface flow constructed wetland, followed by a horizontal subsurface flow constructed wetland (VSSF-HSSF) were evaluated. Two saturation levels were used: (a) partially saturated HB1:VSSF1 (0.6 m)-HSSF1 (0.15 m), (b) saturated HB2: VSSF2 (0.8 m)-HSSF2 (0.25 m). Each unit was planted with Schoenoplectus californicus and was operated for 297 days. The removal efficiencies in HB1 and HB2 were above 70%, 86%, 77% and 55% for chemical oxygen demand (COD), total suspended solids (TSS), nitrogen as ammonium (NH4+-N), and total nitrogen (TN), respectively. For VSSF, a higher level of saturation (from 0.6 to 0.8 m) meant a decrease of 17% in the TN removal efficiencies, and for HSSF, an increase from 0.15 to 0.25 m of saturation meant a decrease of 11 and 10% in the NH4+-N and TN removal efficiencies, respectively. Thus, the increase of saturation level in HBCWs reduces the transformation and/or removal of components of the wastewaters to be treated, particularly nitrogen. Through this research, the possibility of optimizing the transformation of nitrogen with partially saturated hybrids can be examined.
|
|
|
del Rio, A. V., Campos, J. L., Da Silva, C., Pedrouso, A., & Mosquera-Corral, A. (2019). Determination of the intrinsic kinetic parameters of ammonia-oxidizing and nitrite-oxidizing bacteria in granular and flocculent sludge. Sep. Purif. Technol., 213, 571–577.
Abstract: The different oxygen affinities of ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) are often used to define the operational strategy to achieve partial nitritation (PN) required before the anammox (AMX) process. For this purpose, apparent kinetic parameters are mainly used in the case of granular sludge, which can lead to errors when defining the operational conditions to obtain only nitritation (avoiding nitratation). In the present study, a mathematical methodology is proposed to determine the intrinsic kinetic parameters of AOB and NOB in granular sludge based on data obtained by respirometric assays. Additionally, the oxygen affinity constant (K-O2) and maximum specific rate (r(max)) of flocculent and granular sludge sample, produced under mainstream and sidestream conditions were determined at various temperatures (15, 20 and 30 degrees C). The results show that for granules, the intrinsic K-O2 and r(max) values were lower and higher, respectively, than the apparent values. Furthermore, the K-O2 values for flocs and granules at all of the tested temperatures were lower for NOB than for AOB. The values obtained for the kinetic parameters indicated that it is impossible to maintain partial nitritation by only controlling the dissolved oxygen concentration.
|
|
|
del Rio, A. V., da Silva, T., Martins, T. H., Foresti, E., Campos, J. L., Mendez, R., et al. (2017). Partial Nitritation-Anammox Granules: Short-Term Inhibitory Effects of Seven Metals on Anammox Activity. Water Air Soil Pollut., 228(11), 9 pp.
Abstract: The inhibitory effect of seven different metals on the specific anammox activity of granular biomass, collected from a single stage partial nitritation/anammox reactor, was evaluated. The concentration of each metal that led to a 50% inhibition concentration (IC50) was 19.3 mg Cu+2/L, 26.9 mg Cr+2/L, 45.6 mg Pb+2/L, 59.1 mg Zn+2/L, 69.2 mg Ni+2/L, 174.6 mg Cd+2/L, and 175.8 mg Mn+2/L. In experiments performed with granules mechanically disintegrated (flocculent-like sludge), the IC50 for Cd+2 corresponded to a concentration of 93.1 mg Cd+2/L. These results indicate that the granular structure might act as a physical barrier to protect anammox bacteria from toxics. Furthermore, the presence of an external layer of ammonia oxidizing bacteria seems to mitigate the inhibitory effect of the metals, as the values of IC50 obtained in this study for anammox activity were higher than those previously reported for anammox granules. Additionally, the results obtained confirmed that copper is one of the most inhibitory metals for anammox activity and revealed that chromium, scarcely studied yet, has a similar potential inhibitory effect.
|
|
|
Giustinianovich, E. A., Campos, J. L., & Roeckel, M. D. (2016). The presence of organic matter during autotrophic nitrogen removal: Problem or opportunity? Sep. Purif. Technol., 166, 102–108.
Abstract: The simultaneous nitrification, Anammox and denitrification (SNAD) process discovered six years ago is an adaptation of the autotrophic denitrification process that allows for treating nitrogen-rich wastewater streams with moderate amounts of organic carbon. Several authors have noted that it is possible to utilize organic carbon to promote nitrogen removal via the action of denitrifying microorganisms, which can remove the remnant nitrate produced by Anammox bacteria. Thus, SNAD systems can achieve nitrogen removal efficiencies higher than 89%, which is what is expected under autotrophic conditions. Three bacterial groups are responsible for SNAD reactions: ammonium-oxidizing bacteria (AOB), anaerobic ammonium-oxidizing bacteria (AnAOB) and heterotrophic bacteria (HB). Because HB will compete with AOB and AnAOB for oxygen and nitrite, respectively, the system should be operated in such way that a balance among the different bacterial populations is achieved. Here, the results reported in the literature are analyzed to define suitable characteristics of effluents for treatment and operational conditions to allow the SNAD process to be carried out with different types of technologies. (C) 2016 Elsevier B.V. All rights reserved.
|
|
|
Pichel, A., Fra, A., Morales, N., Campos, J. L., Mendez, R., Mosquera-Corral, A., et al. (2021). Is the ammonia stripping pre-treatment suitable for the nitrogen removal via partial nitritation-anammox of OFMSW digestate? J. Hazard. Mater., 403, 123458.
Abstract: Treating the organic fraction of municipal solid waste (OFMSW) can be performed by coupling the anaerobic digestion (AD) and partial nitritation-anammox (PN-AMX) processes for organic matter and nitrogen removal, respectively. Besides, an ammonia stripping (AS) step before the AD benefit the removal of organic matter. In the present study, the operation of two PN-AMX sequencing batch reactors with and without AS pre-treated OFMSW digestate (AS-SBR and nAS-SBR, respectively) was assessed. The specific anammox activity decreased by 90 % for increasing proportions of fed OFMSW in both cases, indicating no differences over the anammox activity whether the AS pre-treatment is implemented or not. For 100 % OFMSW proportion, the AS-SBR achieved better effluent quality than the nAS-SBR (127 +/- 88 vs. 1050 +/- 23 mg N/L) but with lower nitrogen removal rates (58 +/- 8 vs. 687 +/- 32 g N/(L.d)). Still, the latter required successive re-inoculations to obtain higher removal rates. Changes in the microbial communities were mainly correlated to sCOD/N ratios in the OFMSW, being Candidatus Brocadia the dominant anamnmox species. The results proved the AS to be a suitable pre-treatment, despite the higher sCOD/N ratios in the OFMSW digestate, achieving good synergy between the PN-AMX and heterotrophic denitrification processes.
|
|