Alvarez-Miranda, E., Pereira, J., Vargas, C., & Vila, M. (2022). Variable-depth local search heuristic for assembly line balancing problems. Int. J. Prod. Res., Early Access.
Abstract: Assembly lines are production flow systems wherein activities are organised around a line consisting of various workstations through which the product flows. At each station, the product is assembled through a subset of operations. The assembly line balancing problem (ALBP) consists of allocating operations between stations to maximise the system efficiency. In this study, a variable-depth local search algorithm is proposed for solving simple assembly line balancing problems (SALBPs), which are the most widely studied versions of the ALBP. Although the state-of-the-art techniques for solving the SALBP consist of exact enumeration-based methods or heuristics, this paper proposes a local search-based heuristic using variable-length sequences that allow the solution space to be efficiently explored. The proposed algorithm improves the best solution known for multiple instances reported in the literature, indicating that its efficiency is comparable to those of the state-of-the-art method for solving the SALBP. Moreover, the characteristics of the instances for which the proposed procedure provides a better solution than previously reported construction procedures are investigated.
|
Pereira, J. (2018). Modelling and solving a cost-oriented resource-constrained multi-model assembly line balancing problem. Int. J. Prod. Res., 56(11), 3994–4016.
Abstract: A line balancing problem considers the assignment of operations to workstations in an assembly line. While assembly lines are usually associated to mass production of standardised goods, their advantages have led to their widespread use whenever a product-oriented production system is applicable and the benefits of the labour division and specialisation are significant, even when some of its characteristics may deviate from classical assembly lines. In this work, we study a line balancing problem found in the textile industry in which the line must be balanced for multiple types of goods taking into account resource requirements. In order to solve the problem, a hybrid method that combines classical methods for line balancing with an Estimation of Distribution Algorithm is proposed. Computational experiments show that the new procedure improves upon the state of the art when compared using a benchmark set derived from the literature, as well as when compared using data from the manufacturer that originated this research work.
|
Pereira, J., & Ritt, M. (2022). A note on “Algorithms for the Calzedonia workload allocation problem”. J. Oper. Res. Soc., 73(6), 1420–1422.
Abstract: Battarra et al. recently proposed a novel assembly line balancing problem with applications to the apparel industry, where the tasks are performed in a fixed order. To solve the problem, one has to assign workers and tasks to the workstations with the objective of maximising the throughput of the assembly line. In this paper, we provide dynamic programming formulations for the general problem and some special cases. We then use these formulations to develop an exact solution approach that optimally solves the instances in Battarra et al. within seconds.
|