|
Goles, E., Montalva-Medel, M., MacLean, S., & Mortveit, H. (2018). Block Invariance in a Family of Elementary Cellular Automata. J. Cell. Autom., 13(1-2), 15–32.
Abstract: We study the steady state invariance of elementary cellular automata (ECA) under different deterministic updating schemes. Specifically, we study a family of eleven ECA whose steady state invariance were left under conjecture in [2].
|
|
|
Goles, E., Montalva-Medel, M., Mortveit, H., & Ramirez-Flandes, S. (2015). Block Invariance in Elementary Cellular Automata. J. Cell. Autom., 10(1-2), 119–135.
Abstract: Consider an elementary cellular automaton (ECA) under periodic boundary conditions. Given an arbitrary partition of the set of vertices we consider the block updating, i.e. the automaton's local function is applied from the first to the last set of the partition such that vertices belonging to the same set are updated synchronously. The automaton is said block-invariant if the set of periodic configurations is independent of the choice of the block updating. When the sets of the partition are singletons we have the sequential updating: vertices are updated one by one following a permutation pi. In [5] the authors analyzed the pi-invariance of the 2(8) = 256 possible ECA rules (or the 88 non-redundant rules subset). Their main result was that for all n > 3, exactly 41 of these non-redundant rules are pi-invariant. In this paper we determine the subset of these 41 rules that are block invariant. More precisely, for all n > 3, exactly 15 of these rules are block invariant. Moreover, we deduce that block invariance also implies that the attractor structure itself is independent of the choice of the block update.
|
|
|
MacLean, S., Montalva-Medel, M., & Goles, E. (2019). Block invariance and reversibility of one dimensional linear cellular automata. Adv. Appl. Math., 105, 83–101.
Abstract: Consider a one-dimensional, binary cellular automaton f (the CA rule), where its n nodes are updated according to a deterministic block update (blocks that group all the nodes and such that its order is given by the order of the blocks from left to right and nodes inside a block are updated synchronously). A CA rule is block invariant over a family F of block updates if its set of periodic points does not change, whatever the block update of F is considered. In this work, we study the block invariance of linear CA rules by means of the property of reversibility of the automaton because such a property implies that every configuration has a unique predecessor, so, it is periodic. Specifically, we extend the study of reversibility done for the Wolfram elementary CA rules 90 and 150 as well as, we analyze the reversibility of linear rules with neighbourhood radius 2 by using matrix algebra techniques. (C) 2019 Elsevier Inc. All rights reserved.
|
|
|
Montalva-Medel, M., Ledger, T., Ruz, G. A., & Goles, E. (2021). Lac Operon Boolean Models: Dynamical Robustness and Alternative Improvements. Mathematics, 9(6), 600.
Abstract: In Veliz-Cuba and Stigler 2011, Boolean models were proposed for the lac operon in Escherichia coli capable of reproducing the operon being OFF, ON and bistable for three (low, medium and high) and two (low and high) parameters, representing the concentration ranges of lactose and glucose, respectively. Of these 6 possible combinations of parameters, 5 produce results that match with the biological experiments of Ozbudak et al., 2004. In the remaining one, the models predict the operon being OFF while biological experiments show a bistable behavior. In this paper, we first explore the robustness of two such models in the sense of how much its attractors change against any deterministic update schedule. We prove mathematically that, in cases where there is no bistability, all the dynamics in both models lack limit cycles while, when bistability appears, one model presents 30% of its dynamics with limit cycles while the other only 23%. Secondly, we propose two alternative improvements consisting of biologically supported modifications; one in which both models match with Ozbudak et al., 2004 in all 6 combinations of parameters and, the other one, where we increase the number of parameters to 9, matching in all these cases with the biological experiments of Ozbudak et al., 2004.
|
|