FerradaSalas, A., Hernandez, R., & Martin, M. J. (2017). On Convex Combinations Of Convex Harmonic Mappings. Bull. Aust. Math. Soc., 96(2), 256–262.
Abstract: The family Flambda of orientationpreserving harmonic functions f = h + (g) over bar in the unit disc D (normalised in the standard way) satisfying h' (z) + g' (z) = 1/(1 + lambda z)(1 + (lambda) over barz), z is an element of D, for some lambda is an element of partial derivative D, along with their rotations, play an important role among those functions that are harmonic and orientationpreserving and map the unit disc onto a convex domain. The main theorem in this paper generalises results in recent literature by showing that convex combinations of functions in Flambda are convex.
