|
Elangovan, K., Saravanan, P., Campos, C. H., Sanhueza-Gómez, F., Khan, M. M. R., Chin, S. Y., et al. (2023). Outline of microbial fuel cells technology and their significant developments, challenges, and prospects of oxygen reduction electrocatalysts. Front. Chem. Eng., 5, 1228510.
Abstract: The microbial fuel cells (MFCs) which demonstrates simultaneous production of electricity and wastewater treatment have been considered as one of the potential and greener energy production technology among the available bioelectrochemical systems. The air-cathode MFCs have gained additional benefits due to using air and avoiding any chemical substances as catholyte in the cathode chamber. The sluggish oxygen reduction reaction (ORR) kinetics at the cathode is one of the main obstacles to achieve high microbial fuel cell (MFC) performances. Platinum (Pt) is one of the most widely used efficient ORR electrocatalysts due to its high efficient and more stable in acidic media. Because of the high cost and easily poisoned nature of Pt, several attempts, such as a combination of Pt with other materials, and using non-precious metals and non-metals based electrocatalysts has been demonstrated. However, the efficient practical application of the MFC technology is not yet achieved mainly due to the slow ORR. Therefore, the review which draws attention to develop and choosing the suitable cathode materials should be urgent for the practical applications of the MFCs. In this review article, we present an overview of the present MFC technology, then some significant advancements of ORR electrocatalysts such as precious metals-based catalysts (very briefly), non-precious metals-based, non-metals and carbon-based, and biocatalysts with some significant remarks on the corresponding results for the MFC applications. Lastly, we also discussed the challenges and prospects of ORR electrocatalysts for the practical application of MFCs.
|
|
|
Kumaresan, N., Karuppasamy, P., Kumar, M. P., Peera, S. G., AlSalhi, M. S., Devanesan, S., et al. (2023). Synthesis and characterization of metal-free nanosheets of carbo-catalysts for bifunctional electrocatalyst towards HER and OER application. Mol. Catal., 539, 113043.
Abstract: Production of “green hydrogen” through water electrolysis is attracting considerable attention in recent years, due to the high demand for green energy technologies. The efficiency of water electrolysis depends on the electrocatalytic activity of anodic and cathodic electrocatalysts. Currently, utilizing Pt and RuO2-based elec-trocatalysts is expensive in terms of commercial aspects. Therefore, growing research for inventing efficient and cheap electrocatalysts is undergoing rigorously. In this work, we have synthesized, biomass-derived electro-catalysts with intrinsically implanted heteroatoms as hydrogen and oxygen evolution reactions in alkaline electrolytes. The biomass carbon catalyst is derived from the carbonation of the Acorus Calamus plant “root”. The derived carbon is activated by KOH treatment (C-750). The resultant carbon powder is characterized by various physiochemical and electrochemical characterization techniques. The C-750 catalyst is found to have excellent morphology, surface area (3488 m2/g), pore size (4.08 nm), pore volume (1.10 cc/g), and intrinsically doped N. The HRTEM analysis of C-750 reveals well-distributed microporous and graphitic surfaces. When used as an electrocatalyst for HER and OER analysis, the C-750 exhibited appreciable electrocatalytic activity with an overpotential of-0.330 V and 0.563 V vs. RHE, respectively at the current density of-10.0 mA/cm2. In addition, the C-750 catalyst also showed excellent stability with almost zero degradation in a chronoamperometric measurement carried out for 10 hrs.
|
|