|
Pabon-Pereira, C., Slingerland, M., Hogervorst, S., van Lier, J., & Rabbinge, R. (2019). A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability, 11(14), 23 pp.
Abstract: This paper shows how system design determines sustainability outcomes of cassava bioethanol production in Colombia. The recovery of the energy contained in by-products is recommended as compared to single product production. In particular, this study assesses the energy, greenhouse gases, water, and land use performance of alternative cassava cascades working at different scales, highlighting the implications of including anaerobic digestion technology in the chain. The centralized systems showed a poorer energy and greenhouse gases performance as compared to decentralized ones in part due to the artificial drying of cassava chips in the centralized facility. Under solar drying of cassava chips, systems with anaerobic digestion produced three to five times more energy than demanded and produced greenhouse gas savings of 0.3 kgCO(2eq) L EtOH-1. The water balance output depends upon the water reuse within the ethanol industry, which demands 21-23 L EtOH-1. In the anaerobic digestion scenarios, assuming liquid flows are treated separately, complete water recovery is feasible. Land use for cassava cultivation was calculated to be 0.27-0.35 ha tEtOH(-1). The energy and water content of the material to digest, the options for digestate reuse, and the recovery of the methane produced are major considerations substantially influencing the role of anaerobic digestion within cassava cascade configurations.
|
|
|
Puig-Castellvi, F., Midoux, C., Guenne, A., Conteau, D., Franchi, O., Bureau, C., et al. (2022). A longitudinal study of the effect of temperature modification in full-scale anaerobic digesters – dataset combining 16S rDNA gene sequencing, metagenomics, and metabolomics data. Data Br., 41, 107960.
Abstract: Data in this article provides detailed information on the microbial dynamics and degradation performances in two fullscale anaerobic digesters operated in parallel for 476 days. One of them was kept at 35 degrees C for the whole experiment, while the other was submitted to sub-mesophilic (25 degrees C) conditions between days 123 and 373. Sludge samples were collected from both digesters at days 0, 80, 177, 218, 281, 353, and 462. The provided data include the operational conditions of the digesters and the characterization of the sludge samples at the physicochemical level, indicative of the digesters' degradation performance. It also includes the characterization of the sludge samples at the multiomics level (16S rRNA gene sequencing, metagenomics, and metabolomics profiling), to decipher the changes in the microbial structure and molecular activity. The 16S rDNA gene sequencing, metagenomics, and metabolomics data were generated using an IonTorrent PGM sequencer, an Illumina NextSeq 500 sequencer, and LTQ-Orbitrap XL mass spectrometer respectively. The 16S rDNA gene raw data and the metagenomics data have been deposited in the BioProject PRJEB49115, in the ENA database (https://www.ebi.ac.uk/ena/browser/view/PRJEB49115). The metabolomics data has been deposited at the Metabolomics Workbench, with study id ST002004 (DOI: 10.21228/M8JM6B). The data can be used as a source for comparisons with other studies working with data from full-scale anaerobic digesters, especially for those investigating the effect of the temperature modification. The data is associated with the research article “Metataxonomics, metagenomics, and metabolomics analysis of the influence of temperature modification in full-scale anaerobic digesters” (Puig-Castellvi et al [1]). (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
|
|