Baier, R. V., Raggio, J. I. C., Arancibia, C. T., Bustamante, M., Perez, L., Burda, I., et al. (2021). Structurefunction assessment of 3Dprinted porous scaffolds by a lowcost/ open source fused filament fabrication printer. Mater. Sci. Eng. CMater. Biol. Appl., 123, 111945.
Abstract: Additive manufacturing encompasses a plethora of techniques to manufacture structures from a computational model. Among them, fused filament fabrication (FFF) relies on heating thermoplastics to their fusion point and extruding the material through a nozzle in a controlled pattern. FFF is a suitable technique for tissue engineering, given that allows the fabrication of 3Dscaffolds, which are utilized for tissue regeneration purposes. The objective of this study is to assess a lowcost/opensource 3D printer (InHouse), by manufacturing both solid and porous samples with relevant microarchitecture in the physiological range (100?500 ?m pore size), using an equivalent commercial counterpart for comparison. For this, compressive tests in solid and porous scaffolds manufactured in both printers were performed, comparing the results with finite element analysis (FEA) models. Additionally, a microarchitectural analysis was done in samples from both printers, comparing the measurements of both pore size and porosity to their corresponding computeraided design (CAD) models. Moreover, a preliminary biological assessment was performed using scaffolds from our InHouse printer, measuring cell adhesion efficiency. Finally, Fourier transform infrared spectroscopy ? attenuated total reflectance (FTIR?ATR) was performed to evaluate chemical changes in the material (polylactic acid) after fabrication in each printer. The results show that the InHouse printer achieved generally better mechanical behavior and resolution capacity than its commercial counterpart, by comparing with their FEA and CAD models, respectively. Moreover, a preliminary biological assessment indicates the feasibility of the InHouse printer to be used in tissue engineering applications. The results also show the influence of pore geometry on mechanical properties of 3Dscaffolds and demonstrate that properties such as the apparent elastic modulus (Eapp) can be controlled in 3Dprinted scaffolds.

Fuenzalida, C., JerezHanckes, C., & McClarren, R. G. (2019). Uncertainty Quantification For Multigroup Diffusion Equations Using Sparse Tensor Approximations. SIAM J. Sci. Comput., 41(3), B545–B575.
Abstract: We develop a novel method to compute first and second order statistical moments of the neutron kinetic density inside a nuclear system by solving the energydependent neutron diffusion equation. Randomness comes from the lack of precise knowledge of external sources as well as of the interaction parameters, known as cross sections. Thus, the density is itself a random variable. As Monte Carlo simulations entail intense computational work, we are interested in deterministic approaches to quantify uncertainties. By assuming as given the first and second statistical moments of the excitation terms, a sparse tensor finite element approximation of the first two statistical moments of the dependent variables for each energy group can be efficiently computed in one run. Numerical experiments provided validate our derived convergence rates and point to further research avenues.
