Ocampo-Melgar, A., Barria, P., Chadwick, C., & Riyas, C. (2022). Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake. Hydrol. Earth Syst. Sci., 26(19), 5103–5118.
Abstract: Hydrological modeling tools can support collaborative decision processes by visually displaying hydrological systems connections, uncertainties, as well as conflicting preferences over water management strategies. Nevertheless, many challenges remain in the real application of these technical tools to successfully implement, capture, and communicate with non-experts the complexities of coupled human hydrological systems. A 5-step process shows how a WEAP-based hydrological study aiming to explore the disappearance of a 12 km(2) lake in the Aculeo basin in Chile was transformed into a multiple question-driven sociohydrological modeling process to help answer the diversity of questions instigating conflict. Collaboration allowed construction of a surface-groundwater hydrological model that responded to local stakeholders' uncertainties. While testing a subset of socially accepted management strategies under two climate change scenarios, combining the strategies allows recovering up to half the lake water volume. However, the 5-step participatory modeling process also shows how the increasing social-environmental conflicts over the causes and effects of the water scarcity are challenging barriers to overcome with modeling tools. As presented in this article, although flexible approaches and research agendas could better support the exploration of synergies towards collaboration and production of useful and socially acceptable hydrological models, there are still value-driven aspects of water management that need to be explored to better support science policy dialogues.
|
Ramajo, L., Fernandez, C., Nunez, Y., Caballero, P., Lardies, M. A., & Poupin, M. J. (2019). Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci., 76(6), 1836–1849.
Abstract: Coastal biota is exposed to continuous environmental variability as a consequence of natural and anthropogenic processes. Responding to heterogeneous conditions requires the presence of physiological strategies to cope with the environment. Ecosystems influenced by upwelling endure naturally cold, acidic and hypoxic conditions, nevertheless they sustain major fisheries worldwide. This suggests that species inhabiting upwelling habitats possess physiological adaptations to handle high environmental variability. Here, we assessed the impact of the main upwelling drivers (temperature, pH and oxygen) in isolation and combined on eco-physiological responses of Chilean scallop Argopecten purpuratus. A. purpuratus responded to hypoxia by increasing their metabolic performance to maintain growth and calcification. Calcification was only affected by pH and increased under acidic conditions. Further, A. purpuratus juveniles prioritized calcification at the expense of growth under upwelling conditions. Increasing temperature had a significant impact by enhancing the physiological performance of A. purpuratus juveniles independently of oxygen and pH conditions, but this was associated with earlier and higher mortalities. Our results suggest that A. purpuratus is acclimated to short-term colder, acidic and hypoxic conditions, and provide important information of how this species responds to the heterogeneous environment of upwelling, which is significantly relevant in the climatic context of upwelling intensification.
|