Lillo, C., Leiva, V., Nicolis, O., & Aykroyd, R. G. (2018). L-moments of the Birnbaum-Saunders distribution and its extreme value version: estimation, goodness of fit and application to earthquake data. J. Appl. Stat., 45(2), 187–209.
Abstract: Understanding patterns in the frequency of extreme natural events, such as earthquakes, is important as it helps in the prediction of their future occurrence and hence provides better civil protection. Distributions describing these events are known to be heavy tailed and positive skew making standard distributions unsuitable for modelling the frequency of such events. The Birnbaum-Saunders distribution and its extreme value version have been widely studied and applied due to their attractive properties. We derive L-moment equations for these distributions and propose novel methods for parameter estimation, goodness-of-fit assessment and model selection. A simulation study is conducted to evaluate the performance of the L-moment estimators, which is compared to that of the maximum likelihood estimators, demonstrating the superiority of the proposed methods. To illustrate these methods in a practical application, a data analysis of real-world earthquake magnitudes, obtained from the global centroid moment tensor catalogue during 1962-2015, is carried out. This application identifies the extreme value Birnbaum-Saunders distribution as a better model than classic extreme value distributions for describing seismic events.
|
Marchant, C., Leiva, V., Cysneiros, F. J. A., & Vivanco, J. F. (2016). Diagnostics in multivariate generalized Birnbaum-Saunders regression models. J. Appl. Stat., 43(15), 2829–2849.
Abstract: Birnbaum-Saunders (BS) models are receiving considerable attention in the literature. Multivariate regression models are a useful tool of the multivariate analysis, which takes into account the correlation between variables. Diagnostic analysis is an important aspect to be considered in the statistical modeling. In this paper, we formulate multivariate generalized BS regression models and carry out a diagnostic analysis for these models. We consider the Mahalanobis distance as a global influence measure to detect multivariate outliers and use it for evaluating the adequacy of the distributional assumption. We also consider the local influence approach and study how a perturbation may impact on the estimation of model parameters. We implement the obtained results in the R software, which are illustrated with real-world multivariate data to show their potential applications.
|