|
Alvarez-Miranda, E., & Pereira, J. (2022). A Districting Application with a Quality of Service Objective. Mathematics, 10(1), 13.
Abstract: E-commerce sales have led to a considerable increase in the demand for last-mile delivery companies, revealing several problems in their logistics processes. Among these problems, are not meeting delivery deadlines. For example, in Chile, the national consumer service (SERNAC) indicated that in 2018, late deliveries represented 23% of complaints in retail online sales and were the second most common reason for complaints. Some of the causes are incorrectly designed delivery zones because in many cases, these delivery zones do not account for the demographic growth of cities. The result is an imbalanced workload between different zones, which leads to some resources being idle while others fail to meet their workload in satisfactory conditions. The present work proposes a hybrid method for designing delivery zones with an objective based on improving the quality of express delivery services. The proposed method combines a preprocess based on the grouping of demand in areas according to the structure of the territory, a heuristic that generates multiple candidates for the distribution zones, and a mathematical model that combines the different distribution zones generated to obtain a final territorial design. To verify the applicability of the proposed method, a case study is considered based on the real situation of a Chilean courier company with low service fulfillment in its express deliveries. The results obtained from the computational experiments show the applicability of the method, highlighting the validity of the aggregation procedure and improvements in the results obtained using the hybrid method compared to the initial heuristic. The final solution improves the ability to meet the conditions associated with express deliveries, compared with the current situation, by 12 percentage points. The results also allow an indicative sample of the critical service factors of a company to be obtained, identifying the effects of possible changes in demand or service conditions
|
|
|
Alvarez-Miranda, E., Chace, S., & Pereira, J. (2021). Assembly line balancing with parallel workstations. Int. J. Prod. Res., 59(21), 6486–6506.
Abstract: The simple assembly line balancing problem (SALBP) considers work division among different workstations of a serially arranged assembly process to maximise its efficiency under workload (cumulative) and technological (precedence) constraints. In this work, we consider a variant of the SALBP which allows parallel workstations. To study the effect of parallel stations, we propose a new problem (the parallel station assembly line balancing problem or PSALBP) in which the objective is to minimise the number of parallel stations required to obtain the maximum theoretical efficiency of the assembly process. We study the complexity of the problem and identify a polynomially solvable case. This result is then used as a building block for the development of a heuristic solution procedure. Finally, we carry out a computational experiment to identify the characteristics of assembly lines that may benefit from station paralleling and to evaluate the performance of the proposed heuristic.
|
|
|
Averbakh, I., & Pereira, J. (2021). Tree optimization based heuristics and metaheuristics in network construction problems. Comput. Oper. Res., 128, 105190.
Abstract: We consider a recently introduced class of network construction problems where edges of a transportation network need to be constructed by a server (construction crew). The server has a constant construction speed which is much lower than its travel speed, so relocation times are negligible with respect to construction times. It is required to find a construction schedule that minimizes a non-decreasing function of the times when various connections of interest become operational. Most problems of this class are strongly NP-hard on general networks, but are often tree-efficient, that is, polynomially solvable on trees. We develop a generic local search heuristic approach and two metaheuristics (Iterated Local Search and Tabu Search) for solving tree-efficient network construction problems on general networks, and explore them computationally. Results of computational experiments indicate that the methods have excellent performance.
|
|
|
Lagos, F., & Pereira, J. (2023). Multi-arme d bandit-base d hyper-heuristics for combinatorial optimization problems. Eur. J. Oper. Res., 312(1), 70–91.
Abstract: There are significant research opportunities in the integration of Machine Learning (ML) methods and Combinatorial Optimization Problems (COPs). In this work, we focus on metaheuristics to solve COPs that have an important learning component. These algorithms must explore a solution space and learn from the information they obtain in order to find high-quality solutions. Among the metaheuristics, we study Hyper-Heuristics (HHs), algorithms that, given a number of low-level heuristics, iteratively select and apply heuristics to a solution. The HH we consider has a Markov model to produce sequences of low-level heuristics, which we combine with a Multi-Armed Bandit Problem (MAB)-based method to learn its parameters. This work proposes several improvements to the HH metaheuristic that yields a better learning for solving problem instances. Specifically, this is the first work in HHs to present Exponential Weights for Exploration and Exploitation (EXP3) as a learning method, an algorithm that is able to deal with adversarial settings. We also present a case study for the Vehicle Routing Problem with Time Windows (VRPTW), for which we include a list of low-level heuristics that have been proposed in the literature. We show that our algorithms can handle a large and diverse list of heuristics, illustrating that they can be easily configured to solve COPs of different nature. The computational results indicate that our algorithms are competitive methods for the VRPTW (2.16% gap on average with respect to the best known solutions), demonstrating the potential of these algorithms to solve COPs. Finally, we show how algorithms can even detect low-level heuristics that do not contribute to finding better solutions to the problem.& COPY
|
|
|
Lespay, H., & Suchan, K. (2021). A case study of consistent vehicle routing problem with time windows. Int. Trans. Oper. Res., 28, 1135–1163.
Abstract: We develop a heuristic for the consistent vehicle routing problem with time windows (ConVRPTW), which is motivated by a real-world application at a food company's distribution center. Besides standard VRPTW restrictions, ConVRPTW assigns each customer just one driver to fulfill his or her orders during the whole multiperiod planning horizon. For each driver and period, a route is sought to serve all their customers with positive demand. For each customer, the number of periods between consecutive orders and the ordered quantities is highly irregular. This causes difficulties in the daily routing, negatively impacting the service level of the company. Similar problems have been studied as ConVRP, where the number of drivers is fixeda priori, and only the total travel time is minimized. Moreover, the clients present no time window constraints, but the visits should be scheduled with a small arrival time variation. In our model, the objective is to minimize the number of drivers. We impose hard time windows but do not consider time consistency in more detail. We compare solutions given by the heuristic with solutions of a mixed-integer linear programming model on a set of small artificial instances and solutions used by the food company on real-world instances. The results show the effectiveness of the heuristic. For the company, we obtain significant improvements in the routing plans, with a lower number of vehicles and a higher rate of orders delivered within the prescribed time window.
|
|
|
Lespay, H., & Suchan, K. (2022). Territory Design for the Multi-Period Vehicle Routing Problem with Time Windows. Comput. Oper. Res., 145, 105866.
Abstract: This study introduces the Territory Design for the Multi-Period Vehicle Routing Problem with Time Windows (TD-MPVRPTW) problem, motivated by a real-world application at a food company's distribution center. This problem deals with the design of contiguous and compact territories for delivery of orders from a depot to a set of customers, with time windows, over a multi-period planning horizon. Customers and their demands vary over time. The problem is modeled as a mixed-integer linear program (MILP) and solved by a proposed heuristic. The heuristic solutions are compared with the proposed MILP solutions on a set of small artificial instances and the food company's solutions on a set of real-world instances. Computational results show that the proposed algorithm can yield high-quality solutions within moderate running times. A methodology is proposed in which the territories computed by the proposed heuristic on the past demand of one month are used for the operational routing during the following month, in which the demand is known only one day in advance. An evaluation shows that the territories obtained with our methodology would have led to levels of service significantly better than the ones that were experienced by the company, using a significantly lower number of vehicles to execute the deliveries.
|
|
|
Letelier, O. R., Espinoza, D., Goycoolea, M., Moreno, E., & Munoz, G. (2020). Production Scheduling for Strategic Open Pit Mine Planning: A Mixed-Integer Programming Approach. Oper. Res., 68(5), 1425–1444.
Abstract: Given a discretized representation of an ore body known as a block model, the open pit mining production scheduling problem that we consider consists of defining which blocks to extract, when to extract them, and how or whether to process them, in such a way as to comply with operational constraints and maximize net present value. Although it has been established that this problem can be modeled with mixed-integer programming, the number of blocks used to represent real-world mines (millions) has made solving large instances nearly impossible in practice. In this article, we introduce a new methodology for tackling this problem and conduct computational tests using real problem sets ranging in size from 20,000 to 5,000,000 blocks and spanning 20 to 50 time periods. We consider both direct block scheduling and bench-phase scheduling problems, with capacity, blending, and minimum production constraints. Using new preprocessing and cutting planes techniques, we are able to reduce the linear programming relaxation value by up to 33%, depending on the instance. Then, using new heuristics, we are able to compute feasible solutions with an average gap of 1.52% relative to the previously computed bound. Moreover, after four hours of running a customized branch-and-bound algorithm on the problems with larger gaps, we are able to further reduce the average from 1.52% to 0.71%.
|
|
|
Mondschein, S., Yankovic, N., & Matus, O. (2021). The Challenges of Administering a New Treatment: The Case of Direct -Acting Antivirals for Hepatitis C Virus. Public Health, 190, 116–122.
Abstract: Objectives: We develop a patient prioritization scheme for treating patients infected with hepatitis C virus (HCV) and study under which scenarios it outperforms the current practices in Spain and Chile.
Study design: We use simulation to evaluate the performance of prioritization rules under two HCV patient cohorts, constructed using secondary data of public records from Chile and Spain, during 2015-2016.
Methods: We use the results of a mathematical model, which determines individual optimal HCV treatment policies as an input for constructing a patient prioritization rule, when limited resources are present. The prioritization is based on marginal analysis on cost increases and health-outcome gains. We construct the Chilean and Spanish case studies and used Monte Carlo simulation to evaluate the performance of our methodology in these two scenarios.
Results: The resulting prioritizations for the Chilean and Spanish patients are similar, despite the significant differences of both countries, in terms of epidemiological profiles and cost structures. Furthermore, when resources are scarce compared with the number of patients in need of the new drug, our prioritization significantly outperforms current practices of treating sicker patients first, both in terms of cost and healthcare indicators: for the Chilean case, we have an increase in the quality-adjusted life years (QALYs) of 0.83 with a cost reduction of 8176 euros per patient, with a budget covering 2.5% of the patients in the cohort. This difference slowly decreases when increasing the available resources, converging to the performance indicators obtained when all patients are treated immediately: for the Spanish case, we have a decrease in the QALYs of 0.17 with a cost reduction of 1134 euros per patient, with a budget covering 20% of the patients in the cohort.
Conclusion: Decision science can provide useful analytical tools for designing efficient public policies that can excel in terms of quantitative health performance indicators.
|
|
|
Moreno, E., Beghelli, A., & Cugini, F. (2017). Traffic engineering in segment routing networks. Comput. Netw., 114, 23–31.
Abstract: Segment routing (SR) has been recently proposed as an alternative traffic engineering (TE) technology enabling relevant simplifications in control plane operations. In the literature, preliminary investigations on SR have focused on label encoding algorithms and experimental assessments, without carefully addressing some key aspects of SR in terms of the overall network TE performance. In this study, ILP models and heuristics are proposed and successfully utilized to assess the TE performance of SR-based packet networks. Results show that the default SR behavior of exploiting equal cost multiple paths (ECMP) may lead to several drawbacks, including higher network resource utilization with respect to cases where ECMP is avoided. Moreover, results show that, by properly performing segment list computations, it is possible to achieve very effective TE solutions by just using a very limited number of stacked labels, thus successfully exploiting the benefits of the SR technology. (C) 2017 Elsevier B.V. All rights reserved.
|
|
|
Pereira, J. (2018). Modelling and solving a cost-oriented resource-constrained multi-model assembly line balancing problem. Int. J. Prod. Res., 56(11), 3994–4016.
Abstract: A line balancing problem considers the assignment of operations to workstations in an assembly line. While assembly lines are usually associated to mass production of standardised goods, their advantages have led to their widespread use whenever a product-oriented production system is applicable and the benefits of the labour division and specialisation are significant, even when some of its characteristics may deviate from classical assembly lines. In this work, we study a line balancing problem found in the textile industry in which the line must be balanced for multiple types of goods taking into account resource requirements. In order to solve the problem, a hybrid method that combines classical methods for line balancing with an Estimation of Distribution Algorithm is proposed. Computational experiments show that the new procedure improves upon the state of the art when compared using a benchmark set derived from the literature, as well as when compared using data from the manufacturer that originated this research work.
|
|
|
Ritt, M., & Pereira, J. (2020). Heuristic and exact algorithms for minimum-weight non-spanning arborescences. Eur. J. Oper. Res., 287(1), 61–75.
Abstract: We address the problem of finding an arborescence of minimum total edge weight rooted at a given vertex in a directed, edge-weighted graph. If the arborescence must span all vertices the problem is solvable in polynomial time, but the non-spanning version is NP-hard. We propose reduction rules which determine vertices that are required or can be excluded from optimal solutions, a modification of Edmonds algorithm to construct arborescences that span a given set of selected vertices, and embed this procedure into an iterated local search for good vertex selections. Moreover, we propose a cutset-based integer linear programming formulation, provide different linear relaxations to reduce the number of variables in the model and solve the reduced model using a branch-and-cut approach. We give extensive computational results showing that both the heuristic and the exact methods are effective and obtain better solutions on instances from the literature than existing approaches, often in much less time. (C) 2020 Elsevier B.V. All rights reserved.
|
|
|
Sandoval, G., Alvarez-Miranda, E., Pereira, J., Rios-Mercado, R. Z., & Diaz, J. A. (2022). A novel districting design approach for on-time last-mile delivery: An application on an express postal company. Omega-Int. J. Manage. Sci., 113, 102687.
Abstract: Last-mile logistics corresponds to the last leg of the supply chain, i.e., the delivery of goods to final cus-tomers, and they comprise the core activities of postal and courier companies. Because of their role in the supply chain, last-mile operations are critical for the perception of customers regarding the perfor-mance of the whole logistic process. In this sense, the sustained growth of e-commerce, which has been abruptly catalyzed by the irruption of the COVID-19 pandemic, has hanged the habits of customers and overtaxed the operational side of delivery companies, hindering their viability and forcing their adap-tation to the novel conditions. Many of these habits will remain after we overcome the sanitary crisis, which will permanently reshape the structure and emphasis of postal supply chains, demanding compa-nies to implement organizational and operational changes to adapt to these new challenges. In this work we address a last-mile logistic design problem faced by a courier and delivery company in Chile, although the same problem is likely to arise in the last-mile delivery operation of other postal companies, in particular in the operation of express delivery services. The operational structure of the company is based on the division of an urban area into smaller territories (districts) and the outsourcing of the delivery operation of each territory to a last-mile contractor. Because of the increasing volume of postal traffic and a decreasing performance of the service, in particular for the case of express deliveries, the company is forced to redesign its current territorial arrangement. Such redesign results in a novel optimization problem that resembles a classical districting problem with the additional quality of service requirements. This novel problem is first formulated as a mathematical programming model and then a specially tailored heuristic is designed for solving it. The proposed approach is tested on instances from the real-life case study, and the obtained results show significant improvements in terms of the percent-age of on-time deliveries achieved by the proposed solution when compared to the current districting design of the company. By performing a sensitivity analysis considering different levels of demand, we show that the proposed approach is effective in providing districting designs capable of enduring signifi-cant increases in the demand for express postal services.
|
|
|
Tarifeno-Gajardo, M., Beghelli, A., & Moreno, E. (2016). Availability-Driven Optimal Design of Shared Path Protection in WDM Networks. Networks, 68(3), 224–237.
Abstract: Availability, defined as the fraction of time a network service is operative, is a key network service parameter. Dedicated protection increases availability but also the cost. Shared protection instead decreases the cost, but also the availability. In this article, we formulate and solve an integer linear programming (ILP) model for the problem of minimizing the backup resources required by a shared-protected static optical network whilst guaranteeing an availability target per connection. The main research challenge is dealing with the nonlinear expression for the availability constraint. Taking the working/backup routes and the availability requirements as input data, the ILP model identifies the set of connections sharing backup resources in any given network link. We also propose a greedy heuristic to solve large instances in much shorter time than the ILP model with low levels of relative error (2.49% average error in the instances studied) and modify the ILP model to evaluate the impact of wavelength conversion. Results show that considering availability requirements can lead up to 56.4% higher backup resource requirements than not considering them at all, highlighting the importance of availability requirements in budget estimation. (C) 2016 Wiley Periodicals, Inc.
|
|