|
Heuer, H., Binh, C. T. T., Jechalke, S., Kopmann, C., Zimmerling, U., Krogerrecklenfort, E., et al. (2012). IncP-1 epsilon plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front. Microbiol., 3, 8 pp.
Abstract: The role of broad-host range IncP-1 epsilon plasmids in the dissemination of antibiotic resistance in agricultural systems has not yet been investigated. These plasmids were detected in total DNA from all of 16 manure samples and in arable soil based on a novel 5'-nuclease assay for real-time PCR. A correlation between IncP-1 epsilon plasmid abundance and antibiotic usage was revealed. In a soil microcosm experiment the abundance of IncP-1 epsilon plasmids was significantly increased even 127 days after application of manure containing the antibiotic compound sulfadiazine, compared to soil receiving only manure, only sulfadiazine, or water. Fifty IncP-1 epsilon plasmids that were captured in E. coli CV601gfp from bacterial communities of manure and arable soil were characterized by PCR and hybridization. All plasmids carried class 1 integrons with highly varying sizes of the gene cassette region and the sul1 gene. Three IncP-1 epsilon plasmids captured from soil bacteria and one from manure were completely sequenced. The backbones were nearly identical to that of the previously described IncP-1 epsilon plasmid pKJK5. The plasmids differed mainly in the composition of a Tn402-like transposon carrying a class 1 integron with varying gene cassettes, IS 1326, and in three of the plasmids the tetracycline resistance transposon In 1721 with various truncations. Diverse Beta- and Gammaproteobacteria were revealed as hosts of one of the IncP-1 epsilon plasmids in soil microcosms. Our data suggest that IncP-1 epsilon plasmids are important vectors for horizontal transfer of antibiotic resistance in agricultural systems.
|
|
|
Pabon-Pereira, C. P., de Vries, J. W., Slingerland, M. A., Zeeman, G., & van Lier, J. B. (2014). Impact of crop-manure ratios on energy production and fertilizing characteristics of liquid and solid digestate during codigestion. Environ. Technol., 35(19), 2427–2434.
Abstract: The influence of maize silage-manure ratios on energy output and digestate characteristics was studied using batch experiments. The methane production, nutrients availability (N and P) and heavy metals' content were followed in multiflask experiments at digestion times 7, 14, 20, 30 and 60 days. In addition, the available nutrient content in the liquid and solid parts of the digestate was evaluated. Aanaerobic digestion favoured the availability of nutrients to plants, after 61 days 20-26% increase in NH4+ and 0-36% increase in PO43- were found in relation to initial concentrations. Digestion time and maize addition increased the availability of PO43-. Inorganic nutrients were found to be mainly available in the liquid part of the digestate, i.e. 80-92% NH4+ and 65-74% PO43-. Manure had a positive effect on the methane production rate, whereas maize silage increased the total methane production per unit volatile solids in all treatments.
|
|
|
Pichel, A., Moreno, R., Figueroa, M., Campos, J. L., Mendez, R., Mosquera-Corral, A., et al. (2019). How to cope with NOB activity and pig manure inhibition in a partial nitritation-anammox process? Sep. Purif. Technol., 212, 396–404.
Abstract: The treatment of pig manure can be performed by anaerobic digestion to diminish the organic matter content and produce biogas, and the resulting digestate has to be subsequently treated for the removal of nitrogenous compounds. The partial nitritation-anammox (PN-AMX) process constitutes an interesting alternative. In the present study, three different short experiments were initially performed to study the influence of nitrite oxidizing bacteria (NOB) present in the inoculum and the pig manure composition over the start-up of the PN-AMX process. The presence of NOB in the inoculum showed to be more crucial than the available anammox activity for a good performance of the PN-AMX process. Batch activity experiments showed a reduction of at least 44.4% in the maximum specific anammox activity due to the pig manure, probably owed to its conductivity (between 6 and 8 mS/cm). In the subsequent long-term operation of the PN-AMX process with non-diluted pre-treated pig manure, the NOB were successfully limited for DO concentrations of 0.1 mg O-2/L, and a nitrogen removal rate (NRR) of 0.1 g N/(L.d) was achieved despite the presence of significant NOB activity in the start-up. A strict control of the DO concentration, with an optimal range of 0.07-0.10 mg O-2/L, was fundamental to balance the removal of nitrogen by PN-AMX and prevent NOB activity. The presence of organic matter, with a ratio sCOD/N in the influent between 0.18 and 1.14 g/g, did not hinder the PN-AMX process, and the contribution of heterotrophic denitrification to the removal of nitrogen was less than 10%.
|
|