|
Gutierrez-Jara, J. P., Vogt-Geisse, K., & Cabrera, M. (2022). Collateral Effects of Insecticide-Treated Nets on Human and Environmental Safety in an Epidemiological Model for Malaria with Human Risk Perception. Int. J. Environ. Res. Public Health, 19(23), 16327.
Abstract: Malaria remains a major health problem in many parts of the world, including Sub-Saharan Africa. Insecticide-treated nets, in combination with other control measures, have been effective in reducing malaria incidence over the past two decades. Nevertheless, there are concerns about improper handling and misuse of nets, producing possible health effects from intoxication and collateral environmental damage. The latter is caused, for instance, from artisanal fishing. We formulate a model of impulsive differential equations to describe the interplay between malaria dynamics, human intoxication, and ecosystem damage; affected by human awareness to these risks and levels of net usage. Our results show that an increase in mosquito net coverage reduces malaria prevalence and increases human intoxications. In addition, a high net coverage significantly reduces the risk perception to disease, naturally increases the awareness for intoxications from net handling, and scarcely increases the risk perception to collateral damage from net fishing. According to our model, campaigns aiming at reducing disease prevalence or intoxications are much more successful than those creating awareness to ecosystem damage. Furthermore, we can observe from our results that introducing closed fishing periods reduces environmental damage more significantly than strategies directed towards increasing the risk perception for net fishing.
|
|
|
Kapitanov, G., Alvey, C., Vogt-Geisse, K., & Feng, Z. L. (2015). An Age-Structured Model For The Coupled Dynamics Of Hiv And Hsv-2. Math. Biosci. Eng., 12(4), 803–840.
Abstract: Evidence suggests a strong correlation between the prevalence of HSV-2 (genital herpes) and the perseverance of the HIV epidemic. HSV-2 is an incurable viral infection, characterized by periodic reactivation. We construct a model of the co-infection dynamics between the two diseases by incorporating a time-since-infection variable to track the alternating periods of infectiousness of HSV-2. The model considers only heterosexual relationships and distinguishes three population groups: males, general population females, and female sex workers. We calculate the basic reproduction numbers for each disease that provide threshold conditions, which determine whether a disease dies out or becomes endemic in the absence of the other disease. We also derive the invasion reproduction numbers that determine whether or not a disease can invade into a population in which the other disease is endemic. The calculations of the invasion reproduction numbers suggest a new aspect in their interpretation – the class from which the initial disease carrier arises is important for understanding the invasion dynamics and biological interpretation of the expressions of the reproduction numbers. Sensitivity analysis is conducted to examine the role of model parameters in influencing the model outcomes. The results are discussed in the last section.
|
|