|
Barros, M., Galea, M., Leiva, V., & Santos-Neto, M. (2018). Generalized Tobit models: diagnostics and application in econometrics. J. Appl. Stat., 45(1), 145–167.
Abstract: The standard Tobit model is constructed under the assumption of a normal distribution and has been widely applied in econometrics. Atypical/extreme data have a harmful effect on the maximum likelihood estimates of the standard Tobit model parameters. Then, we need to count with diagnostic tools to evaluate the effect of extreme data. If they are detected, we must have available a Tobit model that is robust to this type of data. The family of elliptically contoured distributions has the Laplace, logistic, normal and Student-t cases as some of its members. This family has been largely used for providing generalizations of models based on the normal distribution, with excellent practical results. In particular, because the Student-t distribution has an additional parameter, we can adjust the kurtosis of the data, providing robust estimates against extreme data. We propose a methodology based on a generalization of the standard Tobit model with errors following elliptical distributions. Diagnostics in the Tobit model with elliptical errors are developed. We derive residuals and global/local influence methods considering several perturbation schemes. This is important because different diagnostic methods can detect different atypical data. We implement the proposed methodology in an R package. We illustrate the methodology with real-world econometrical data by using the R package, which shows its potential applications. The Tobit model based on the Student-t distribution with a small quantity of degrees of freedom displays an excellent performance reducing the influence of extreme cases in the maximum likelihood estimates in the application presented. It provides new empirical evidence on the capabilities of the Student-t distribution for accommodation of atypical data.
|
|
|
Garcia-Papani, F., Uribe-Opazo, M. A., Leiva, V., & Aykroyd, R. G. (2017). Birnbaum-Saunders spatial modelling and diagnostics applied to agricultural engineering data. Stoch. Environ. Res. Risk Assess., 31(1), 105–124.
Abstract: Applications of statistical models to describe spatial dependence in geo-referenced data are widespread across many disciplines including the environmental sciences. Most of these applications assume that the data follow a Gaussian distribution. However, in many of them the normality assumption, and even a more general assumption of symmetry, are not appropriate. In non-spatial applications, where the data are uni-modal and positively skewed, the Birnbaum-Saunders (BS) distribution has excelled. This paper proposes a spatial log-linear model based on the BS distribution. Model parameters are estimated using the maximum likelihood method. Local influence diagnostics are derived to assess the sensitivity of the estimators to perturbations in the response variable. As illustration, the proposed model and its diagnostics are used to analyse a real-world agricultural data set, where the spatial variability of phosphorus concentration in the soil is considered-which is extremely important for agricultural management.
|
|
|
Leiva, V., Ferreira, M., Gomes, M. I., & Lillo, C. (2016). Extreme value Birnbaum-Saunders regression models applied to environmental data. Stoch. Environ. Res. Risk Assess., 30(3), 1045–1058.
Abstract: Extreme value models are widely used in different areas. The Birnbaum-Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum-Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
|
|
|
Leiva, V., Santos-Neto, M., Cysneiros, F. J. A., & Barros, M. (2016). A methodology for stochastic inventory models based on a zero-adjusted Birnbaum-Saunders distribution. Appl. Stoch. Models. Bus. Ind., 32(1), 74–89.
Abstract: The Birnbaum-Saunders (BS) distribution is receiving considerable attention. We propose a methodology for inventory logistics that allows demand data with zeros to be modeled by means of a new discrete-continuous mixture distribution, which is constructed by using a probability mass at zero and a continuous component related to the BS distribution. We obtain some properties of the new mixture distribution and conduct a simulation study to evaluate the performance of the estimators of its parameters. The methodology for stochastic inventory models considers also financial indicators. We illustrate the proposed methodology with two real-world demand data sets. It shows its potential, highlighting the convenience of using it by improving the contribution margins of a Chilean food industry. Copyright (c) 2015 John Wiley & Sons, Ltd.
|
|
|
Leiva, V., Tejo, M., Guiraud, P., Schmachtenberg, O., Orio, P., & Marmolejo-Ramos, F. (2015). Modeling neural activity with cumulative damage distributions. Biol. Cybern., 109(4-5), 421–433.
Abstract: Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum-Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum-Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.
|
|
|
Marchant, C., Leiva, V., & Cysneiros, F. J. A. (2016). A Multivariate Log-Linear Model for Birnbaum-Saunders Distributions. IEEE Trans. Reliab., 65(2), 816–827.
Abstract: Univariate Birnbaum-Saunders models have been widely applied to fatigue studies. Calculation of fatigue life is of great importance in determining the reliability of materials. We propose and derive new multivariate generalized Birnbaum-Saunders regression models. We use the maximum likelihood method and the EM algorithm to estimate their parameters. We carry out a simulation study to evaluate the performance of the corresponding maximum likelihood estimators. We illustrate the new models with real-world multivariate fatigue data.
|
|