Home | << 1 >> |
![]() |
Carleo, I., Malavolta, L., Desidera, S., Nardiello, D., Wang, S., Turrini, D., et al. (2024). The GAPS programme at TNG. Astron. Astrophys., 682, A135.
Abstract: Context. Different theories have been developed to explain the origins and properties of close-in giant planets, but none of them alone can explain all of the properties of the warm Jupiters (WJs, Porb = 10-200 days). One of the most intriguing characteristics of WJs is that they have a wide range of orbital eccentricities, challenging our understanding of their formation and evolution. Aims. The investigation of these systems is crucial in order to put constraints on formation and evolution theories. TESS is providing a significant sample of transiting WJs around stars bright enough to allow spectroscopic follow-up studies. Methods. We carried out a radial velocity (RV) follow-up study of the TESS candidate TOI-4515 b with the high-resolution spectrograph HARPS-N in the context of the GAPS project, the aim of which is to characterize young giant planets, and the TRES and FEROS spectrographs. We then performed a joint analysis of the HARPS-N, TRES, FEROS, and TESS data in order to fully characterize this planetary system. Results. We find that TOI-4515 b orbits a 1.2 Gyr-old G-star, has an orbital period of Pb = 15.266446 +/- 0.000013 days, a mass of Mb = 2.01 +/- 0.05 MJ, and a radius of Rb = 1.09 +/- 0.04 RJ. We also find an eccentricity of e = 0.46 +/- 0.01, placing this planet among the WJs with highly eccentric orbits. As no additional companion has been detected, this high eccentricity might be the consequence of past violent scattering events.
|
Carone, L., Molliere, P., Zhou, Y. F., Bouwman, J., Yan, F., Baeyens, R., et al. (2021). Indications for very high metallicity and absence of methane in the eccentric exo-Saturn WASP-117b. Astron. Astrophys., 646, A168.
Abstract: Aims. We investigate the atmospheric composition of the long-period (P-orb = 10 days) eccentric exo-Saturn WASP-117b. WASP-117b could be similar in atmospheric temperature and chemistry to WASP-107b. In mass and radius, WASP-117b is similar to WASP-39b, which allows a comparative study of these planets.Methods. We analyzed a near-infrared transmission spectrum of WASP-117b taken with the Hubble Space Telescope (HST) WFC3 G141, which was reduced with two independent pipelines. High-resolution measurements were taken with VLT/ESPRESSO in the optical.Results. We report the robust (3 sigma) detection of a water spectral feature. In a 1D atmosphere model with isothermal temperature, uniform cloud deck, and equilibrium chemistry, the Bayesian evidence of a retrieval analysis of the transmission spectrum indicates a preference for a high atmospheric metallicity
[Fe/H] = 2.58(-0.37)(+0.26) [Fe/H]=2.58-0.37+0.26 and clear skies. The data are also consistent with a lower metallicity composition [Fe/H] < 1.75 and a cloud deck between 10(-2.2) and 10(-5.1) bar, but with weaker Bayesian preference. We retrieve a low CH4 abundance of <10(-4) volume fraction within 1 sigma and <2 x 10(-1) volume fraction within 3<sigma>. We cannot constrain the equilibrium temperature between theoretically imposed limits of 700 and 1000 K. Further observations are needed to confirm quenching of CH4 with K-zz >= 10(8) cm(2) s(-1). We report indications of Na and K in the VLT/ESPRESSO high-resolution spectrum with substantial Bayesian evidence in combination with HST data. |
Sedaghati, E., Sanchez-Lopez, A., Czesla, S., Lopez-Puertas, M., Amado, P. J., Palle, E., et al. (2022). Moderately misaligned orbit of the warm sub-Saturn HD 332231 b. Astron. Astrophys., 659, A44.
Abstract: Measurements of exoplanetary orbital obliquity angles for different classes of planets are an essential tool in testing various planet formation theories. Measurements for those transiting planets on relatively large orbital periods (P > 10 d) present a rather difficult observational challenge. Here we present the obliquity measurement for the warm sub-Saturn planet HD 332231 b, which was discovered through Transiting Exoplanet Survey Satellite photometry of sectors 14 and 15, on a relatively large orbital period (18.7 d). Through a joint analysis of previously obtained spectroscopic data and our newly obtained CARMENES transit observations, we estimated the spin-orbit misalignment angle, lambda to be -42.0(-10.6)(+11.3) deg, which challenges Laplacian ideals of planet formation. Through the addition of these new radial velocity data points obtained with CARMENES, we also derived marginal improvements on other orbital and bulk parameters for the planet, as compared to previously published values. We showed the robustness of the obliquity measurement through model comparison with an aligned orbit. Finally, we demonstrated the inability of the obtained data to probe any possible extended atmosphere of the planet, due to a lack of precision, and place the atmosphere in the context of a parameter detection space.
|
Zakhozhay, O. V., Launhardt, R., Trifonov, T., Kunster, M., Reffert, S., Henning, T., et al. (2022). Radial velocity survey for planets around young stars (RVSPY) A transiting warm super-Jovian planet around HD 114082, a young star with a debris disk. Astron. Astrophys., 667, L14.
Abstract: Aims. We aim to detect planetary companions to young stars with debris disks via the radial velocity method.
Methods. We observed HD114082 during April 2018-August 2022 as one of the targets of our RVSPY program (Radial Velocity Survey for Planets around Young stars). We use the FEROS spectrograph, mounted to the MPG /ESO 2.2mtelescope in Chile, to obtain high signal-to-noise spectra and time series of precise radial velocities (RVs). Additionally, we analyze archival HARPS spectra and TESS photometric data. We use the CERES, CERES ++ and SERVAL pipelines to derive RVs and activity indicators and ExoStriker for the independent and combined analysis of the RVs and TESS photometry. Results. We report the discovery of a warm super-Jovian companion around HD114082 based on a 109.8 +/- 0.4 day signal in the combined RV data from FEROS and HARPS, and on one transit event in the TESS photometry. The best-fit model indicates a 8.0 +/- 1.0M(Jup) companion with a radius of 1.00 +/- 0.03 R-Jup in an orbit with a semi-major axis of 0.51 +/- 0.01 au and an eccentricity of 0.4 +/- 0.04. The companions orbit is in agreement with the known near edge-on debris disk located at similar to 28 au. HD114082 b is possibly the youngest (15 +/- 6 Myr), and one of only three young ( <100 Myr) giant planetary companions for which both their mass and radius have been determined observationally. It is probably the first properly model-constraining giant planet that allows distinguishing between hot and cold-start models. It is significantly more compatible with the cold-start model. |