Home | << 1 2 >> |
![]() |
Antico, F. C., De la Varga, I., Esmaeeli, H. S., Nantung, T. E., Zavattieri, P. D., & Weiss, W. J. (2015). Using accelerated pavement testing to examine traffic opening criteria for concrete pavements. Constr. Build. Mater., 96, 86–95.
Abstract: The risk of cracking in a concrete pavement that is opened to traffic at early ages is related to the maximum tensile stress sigma(I), that develops in the pavement and its relationship to the measured, age dependent, flexural strength of a beam,f(r). The stress that develops in the pavement is due to several factors including traffic loading and restrained volume change caused by thermal or hygral variations. The stress that develops is also dependent on the time-dependent mechanical properties, pavement thickness, and subgrade stiffness. There is a strong incentive to open many pavements to traffic as early as possible to allow construction traffic or traffic from the traveling public to use the pavement. However, if the pavement is opened to traffic too early, cracking may occur that may compromise the service life of the pavement. The purpose of this paper is two-fold: (1) to examine the current opening strength requirements for concrete pavements (typically a flexural strength from beams, f(r)) and (2) to propose a criterion based on the time-dependent changes of sigma(I)/f(r), which accounts for pavement thickness and subgrade stiffness without adding unnecessary risk for premature cracking. An accelerated pavement testing (APT) facility was used to test concrete pavements that are opened to traffic at an early age to provide data that can be compared with an analytical model to determine the effective sigma(I)/f(r), based on the relevant features of the concrete pavement, the subgrade, and the traffic load. It is anticipated that this type of opening criteria can help the decision makers in two ways: (1) it can open pavement sections earlier thereby reducing construction time and (2) it may help to minimize the use of materials with overly accelerated strength gain that are suspected to be more susceptible to develop damage at early ages than materials that gain strength more slowly. (C) 2015 Elsevier Ltd. All rights reserved.
|
Aquea, F., Timmermann, T., & Herrera-Vasquez, A. (2017). Chemical inhibition of the histone acetyltransferase activity in Arabidopsis thaliana. Biochem. Biophys. Res. Commun., 483(1), 664–668.
Abstract: Chemical inhibition of chromatin regulators provides an effective approach to investigate the roles of chromatin modifications in plant and animals. In this work, chemical inhibition of the Arabidopsis histone acetyltransferase activity by gamma-butyrolactone (MB-3), the inhibitor of the catalytic activity of mammalian GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is evaluated. Arabidopsis seedlings were germinated in LS medium supplemented with different concentrations of MB-3, and inhibition in the root length and yellowed leaves were observed. The yellowed leaves phenotype of the plants grown in 100 μM of MB-3 was reverted when plants were additionally treated with 1 μM of TSA, a histone deacetylase inhibitor. Using an immunoblot assay with specific antibodies revealed a reduction of H3K14 acetylation levels at 3 and 24 h post-treatment. At 24 h post-treatment a reduction of H3K9 acetylation levels was observed. Targets of GCN5 related to stress were downregulated at 3 h post-treatment but no change was observed in target genes related to developmental transition. Our results indicate that MB-3 is a chemical inhibitor of the histone acetyltransferase in Arabidopsis and suggest that this inhibitor could function in other plants species. (C) 2016 Elsevier Inc. All rights reserved.
|
Aquea, F., Vega, A., Timmermann, T., Poupin, M. J., & Arce-Johnson, P. (2011). Genome-wide analysis of the SET DOMAIN GROUP family in Grapevine. Plant Cell Reports, 30(6), 1087–1097.
Abstract: The SET DOMAIN GROUP (SDG) proteins represent an evolutionarily-conserved family of epigenetic regulators present in eukaryotes and are putative candidates for the catalysis of lysine methylation in histones. Plant genomes analyses of this family have been performed in arabidopsis, maize, and rice and functional studies have shown that SDG genes are involved in the control of plant development. In this work, we describe the identification and structural characterization of SDG genes in the Vitis vinifera genome. This analysis revealed the presence of 33 putative SDG genes that can be grouped into different classes, as it has been previously described for plants. In addition to the SET domain, the proteins identified possessed other domains in the different classes. As part of our study regarding the growth and development of grapevine, we selected eight genes and their expression levels were analyzed in representative vegetative and reproductive organs of this species. The selected genes showed different patterns of expression during inflorescence and fruit development, suggesting that they participate in these processes. Furthermore, we showed that the expression of selected SDGs changes during viral infection, using as a model Grapevine Leafroll Associated Virus 3-infected symptomatic grapevine leaves and fruits. Our results suggest that developmental changes caused by this virus could be the result of alterations in SDG expression.
|
Canals, C., Maroulis, S., Canessa, E., Chaigneau, S., & Mizala, A. (2022). Mechanisms Underlying Choice-Set Formation: The Case of School Choice in Chile. Soc. Sci. Comput. Rev., Early Access.
Abstract: Many decisions involve selecting among many more options than an individual can effectively examine and consider. Therefore, people usually consider smaller and different “choice sets” as viable options. To better understand the processes affecting choice-set formation, we developed a computational model of how households become aware of potential choices in a context for which understanding household decision-making has important public policy implications: market-based reforms in education. In the model, households learn about the schools to which they can send their children through three mechanisms: find out about geographically proximate schools, access to publicly available information, and information gathered from interactions with other households. We calibrated the model using data from four cities in Chile, where students are not required to attend their neighborhood school. We then used the model to conduct hypothetical computational experiments that assessed how each mechanism impacted the sets of schools known to households before they make their choice (their “awareness set”). We found that the inclusion of a social interaction mechanism was crucial for producing simulated awareness sets that matched the awareness sets provided in a survey conducted by the Chilean Ministry of Education. We also found that the social interaction mechanism played the largest role in determining the quality and price range of the choices available in households’ awareness sets. Our findings highlight the importance of social interactions in a stage of decision-making before the direct impact of other individuals is typically made explicit. Moreover, it validates an approach that can be used in future models where understanding how decision-makers become aware of their options may be as important as the way they choose among them.
|
Canessa, E., & Chaigneau, S. (2014). The dynamics of social agreement according to Conceptual Agreement Theory. Qual. Quant., 48(6), 3289–3309.
Abstract: Many social phenomena can be viewed as processes in which individuals in social groups develop agreement (e.g., public opinion, the spreading of rumor, the formation of social and linguistic conventions). Conceptual Agreement Theory (CAT) models social agreement as a simplified communicational event in which an Observer and Actor exchange ideas about a concept , and where uses that information to infer whether 's conceptual state is the same as its own (i.e., to infer agreement). Agreement may be true (when infers that is thinking and this is in fact the case, event ) or illusory (when infers that is thinking and this is not the case, event ). In CAT, concepts that afford or become more salient in the minds of members of social groups. Results from an agent-based model (ABM) and probabilistic model that implement CAT show that, as our conceptual analyses suggested would be the case, the simulated social system selects concepts according to their usefulness to agents in promoting agreement among them (Experiment 1). Furthermore, the ABM exhibits more complex dynamics where similar minded agents cluster and are able to retain useful concepts even when a different group of agents discards them (Experiment 2). We discuss the relevance of CAT and the current findings for analyzing different social communication events, and suggest ways in which CAT could be put to empirical test.
|
Canessa, E., & Riolo, R. L. (2006). An agent-based model of the impact of computer-mediated communication on organizational culture and performance: an example of the application of complex systems analysis tools to the study of CIS. J. Inf. Technol., 21(4), 272–283.
Abstract: Organizations that make use of computer information systems (CIS) are prototypical complex adaptive systems (CAS). This paper shows how an approach from Complexity Science, exploratory agent-based modeling (ABM), can be used to study the impact of two different modes of use of computer-mediated communication (CMC) on organizational culture (OC) and performance. The ABM includes stylized representations of (a) agents communicating with other agents to complete tasks; (b) an OC consisting of the distribution of agent traits, changing as agents communicate; (c) the effect of OC on communication effectiveness (CE), and (d) the effect of CE on task completion times, that is, performance. If CMC is used in a broad mode, that is, to contact and collaborate with many, new agents, the development of a strong OC is slowed, leading to decreased CE and poorer performance early on. If CMC is used in a local mode, repeatedly contacting the same agents, a strong OC develops rapidly, leading to increased CE and high performance early on. However, if CMC is used in a broad mode over longer time periods, a strong OC can develop over a wider set of agents, leading to an OC that is stronger than an OC which develops with local CMC use. Thus broad use of CMC results in overall CE and performance that is higher than is generated by local use of CMC. We also discuss how the dynamics generated by an ABM can lead to a deeper understanding of the behavior of a CAS, for example, allowing us to better design empirical longitudinal studies.
|
Carmignani, L., Garg, P., Thomsen, M., Gollner, M. J., Fernandez-Pello, C., Urban, D. L., et al. (2022). Effect of sub-atmospheric pressure on the characteristics of concurrent/upward flame spread over a thin solid. Combust. Flame, 245, 112312.
Abstract: The variation of ambient pressure is a potential tool for studying the driving parameters of fire dynamics and heat release in low-pressure environments such as high-altitude locations, aircraft, and spacecraft. The study of upward flame spread over a solid fuel has direct implications on material flammability and fire development, and low pressure environments have recently gained more attention for the possible comparison with the reduced gravity conditions encountered during space missions. In this work, we consider upward spreading flames over thin acrylic sheets in ambient pressures between 30 and 100 kPa. A forced flow velocity of 20 cm/s is added to the naturally-driven buoyant flow, creating a mixed flow field (natural and forced) that varies with pressure. Flame characteristics such as spread rate and standoff distance are measured from the video analysis of the experiments. It is observed that the former decreases with pressure while the latter increases. The larger flame stand-off distance at low pressures partially explains the decrease of the flame spread rate since the convective heat flux from the flame to the solid decreases. Additionally, volumetric concentrations of the combustion products are measured during the experiments. The results show lower O-2 consumption and CO2 production rates at lower pressures. Based on these rates, we could calculate the heat release rate from upward spreading flames at low pressure, providing fundamental information for better understanding pressure-gravity correlations. According to the results, the volumetric heat release rate is proportional to pressure, which is consistent with previous studies on pressure modeling of fires. This suggests that chemical kinetics is not a constraint for the conditions tested in this study, which could help make future flammability tests comparable to low gravity ones.
|
Chang, Q., Zhou, C. C., Valdebenito, M. A., Liu, H. W., & Yue, Z. F. (2022). A novel sensitivity index for analyzing the response of numerical models with interval inputs. Comput. Methods in Appl. Mech. Eng., 400, 115509.
Abstract: This study proposes a novel sensitivity index to provide essential insights into numerical models whose inputs are characterized by intervals. Based on the interval model and its normalized form, the interval processes are introduced to define a new sensitivity index. The index can represent the individual or joint influence of the interval inputs on the output of a considered model. A double-loop strategy, based on global metamodeling and optimization, is established to calculate the index. Subsequently, the proposed index is theoretically compared with two other existing indices, and it is experimentally applied to three numerical examples and a practical engineering problem of a honeycomb sandwich radome. The results indicate that the proposed index is an effective tool for interval sensitivity analysis.
Keywords: Sensitivity analysis; Interval; Uncertainty; Model; Global meta; modeling
|
Cordova, S., Canizares, C., Lorca, A., & Olivares, D. E. (2021). An Energy Management System With Short-Term Fluctuation Reserves and Battery Degradation for Isolated Microgrids. IEEE Trans. Smart Grid, 12(6), 4668–4680.
Abstract: Due to the low-inertia and significant renewable generation variability in isolated microgrids, short time-scale fluctuations in the order of seconds can have a large impact on a microgrid's frequency regulation performance. In this context, the present paper presents a mathematical model for an Energy Management System (EMS) that takes into account the operational impact of the short-term fluctuations stemming from renewable generation rapid changes, and the role that renewable curtailment and batteries, including their degradation, can play to counter-balance these variations. Computational experiments on the real Kasabonika Lake First Nation microgrid and CIGRE benchmark test system show the operational benefits of the proposed EMS, highlighting the need to properly model short-term fluctuations and battery degradation in EMS for isolated microgrids with significant renewable integration.
|
Cordova, S., Canizares, C. A., Lorca, A., & Olivares, D. E. (2022). Frequency-Constrained Energy Management System for Isolated Microgrids. IEEE Trans. Smart Grid, 13(5), 3394–3407.
Abstract: Second-to-second power imbalances stemming from renewable generation can have a large impact on the frequency regulation performance of isolated microgrids, as these are characterized by low inertia and, more commonly nowadays, significant renewable energy penetration. Thus, the present paper develops a novel frequency-constrained Energy Management System (EMS) that takes into account the impact of short-term power fluctuations on the microgrid's operation and frequency regulation performance. The proposed EMS model is based on accurate linear equations describing frequency deviation, rate-of-change-of-frequency, and regulation provision in daily microgrid operations. Dynamic simulations on a realistic CIGRE benchmark test system show the economic and reliability benefits of the presented EMS model, highlighting the need of incorporating fast power fluctuations and their impact on frequency dynamics in EMSs for sustainable isolated microgrids.
|
Diaz, G., Munoz, F. D., & Moreno, R. (2020). Equilibrium Analysis of a Tax on Carbon Emissions with Pass-through Restrictions and Side-payment Rules. Energy J., 41(2), 93–122.
Abstract: Chile was the first country in Latin America to impose a tax on carbon-emitting electricity generators. However, the current regulation does not allow firms to include emission charges as costs for the dispatch and pricing of electricity in real time. The regulation also includes side-payment rules to reduce the economic losses of some carbon-emitting generating units. In this paper we develop an equilibrium model with endogenous investments in generation capacity to quantify the long-run economic inefficiencies of an emissions policy with such features in a competitive setting. We benchmark this policy against a standard tax on carbon emissions and a cap-and-trade program. Our results indicate that a carbon tax with such features can, at best, yield some reductions in carbon emissions at a much higher cost than standard emission policies. These findings highlight the critical importance of promoting short-run efficiency by pricing carbon emissions in the spot market in order to incentivize efficient investments in generating capacity in the long run.
Keywords: Carbon tax; Equilibrium modeling; Market design
|
El Aiss, H., Barbosa, K. A., & Peters, A. A. (2022). Nonlinear Time-Delay Observer-Based Control to Estimate Vehicle States: Lateral Vehicle Model. IEEE Access, 10, 110459–110472.
Abstract: This paper deals with the state estimation and control problem for nonlinear lateral vehicle dynamics with time delays. First, a novel time-varying delay vehicle model described as a Takagi-Sugeno fuzzy model is presented. In particular, it is considered that the lateral force contains an air resistance term which is assumed to be a quadratic function of the lateral vehicle velocity. A time-varying delay has been included in the vehicle states by a simple formula in order to capture brake actuation aspects or other practical aspects that may generate a delayed response, while the nonlinear part of the vehicle model is described as a Lipschitz function. A Takagi-Sugeno time-delay observer-based control that satisfies the Lipschitz condition is proposed to get closed-loop stability conditions. These results generalize existing ones in the literature on lateral dynamics control. Additionally, we provide a new methodology for the controller and observer gains design that can be cast as linear matrix inequality constraints. Finally, we illustrate our results with numerical examples, which also reveal the negative effect of not considering the presence of delays in the controller design.
|
Goles, E., Lobos, F., Ruz, G. A., & Sene, S. (2020). Attractor landscapes in Boolean networks with firing memory: a theoretical study applied to genetic networks. Nat. Comput., 19(2), 295–319.
Abstract: In this paper we study the dynamical behavior of Boolean networks with firing memory, namely Boolean networks whose vertices are updated synchronously depending on their proper Boolean local transition functions so that each vertex remains at its firing state a finite number of steps. We prove in particular that these networks have the same computational power than the classical ones, i.e. any Boolean network with firing memory composed of m vertices can be simulated by a Boolean network by adding vertices. We also prove general results on specific classes of networks. For instance, we show that the existence of at least one delay greater than 1 in disjunctive networks makes such networks have only fixed points as attractors. Moreover, for arbitrary networks composed of two vertices, we characterize the delay phase space, i.e. the delay values such that networks admits limit cycles or fixed points. Finally, we analyze two classical biological models by introducing delays: the model of the immune control of the lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-phage and that of the genetic control of the floral morphogenesis of the plant Arabidopsis thaliana.
|
Gonzalez, E., & Villena, M. (2011). Spatial Lanchester models. Eur. J. Oper. Res., 210(3), 706–715.
Abstract: Lanchester equations have been widely used to model combat for many years, nevertheless, one of their most important limitations has been their failure to model the spatial dimension of the problems. Despite the fact that some efforts have been made in order to overcome this drawback, mainly through the use of Reaction-Diffusion equations, there is not yet a consistently clear theoretical framework linking Lanchester equations with these physical systems, apart from similarity. In this paper, a spatial modeling of Lanchester equations is conceptualized on the basis of explicit movement dynamics and balance of forces, ensuring stability and theoretical consistency with the original model. This formulation allows a better understanding and interpretation of the problem, thus improving the current treatment, modeling and comprehension of warfare applications. Finally, as a numerical illustration, a new spatial model of responsive movement is developed, confirming that location influences the results of modeling attrition conflict between two opposite forces. (C) 2010 Elsevier B.V. All rights reserved.
|
Gonzalez, E., & Villena, M. J. (2011). Spatial attrition modeling: Stability conditions for a 2D + t FD formulation. Comput. Math. Appl., 61(11), 3246–3257.
Abstract: A new general formulation for the spatial modeling of combat is presented, where the main drivers are movement attitudes and struggle evolution. This model in its simplest form is represented by a linear set of two coupled partial differential equations for two independent functions of the space and time variables. Even though the problem has a linear shape, non-negative values for the two functions render this problem as nonlinear. In contrast with other attempts, this model ensures stability and theoretical consistency with the original Lanchester Equations, allowing for a better understanding and interpretation of the spatial modeling. As a numerical illustration a simple combat situation is developed. The model is calibrated to simulate different troop movement tactics that allow an invader force to provoke maximum damage at a minimum cost. The analysis provided here reviews the trade-off between spatial grid and time stepping for attrition cases and then extends it to a new method for guaranteeing good numerical behavior when the solution is expected to grow along the time variable. There is a wide variety of spatial problems that could benefit from this analysis. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords: PDE; Stability; Reaction-diffusion; Spatial attrition modeling
|
Gonzalez, E., & Villena, M. J. (2020). On the spatial dynamics of vaccination: A spatial SIRS-V model. Comput. Math. Appl., 80(5), 733–743.
Abstract: In this paper, we analyze the effects of vaccination from a spatial perspective. We propose a spatial deterministic SIRS-V model, which considers a non-linear system of partial differential equations with explicit attrition and diffusion terms for the vaccination process. The model allows us to simulate numerically the spatial and temporal dynamics of an epidemic, considering different spatial strategies for the vaccination policy. In particular, in our first example we analyze the classical SIRS-V evolution with the addition of movements due to diffusion, while in the second one we focus on modeling one ring vaccination policy. We expect this model can improve spatial predictions of SIR vaccination models by taking into account the spatial dimension of the problem. (C) 2020 Elsevier Ltd. All rights reserved.
|
Guerrero, L., Montalvo, S., Huilinir, C., Campos, J. L., Barahona, A., & Borja, R. (2016). Advances in the biological removal of sulphides from aqueous phase in anaerobic processes: A review. Environ. Rev., 24(1), 84–100.
Abstract: In this paper, we review the latest developments in biological methods used in the removal of hydrogen sulphide, present in the liquid phase in anaerobic reactors. The toxicity of H2S to methane-forming microorganisms and the problems caused by the presence of this compound in the biogas generated during this process, as well as the main causes of hydrogen sulphide generation in anaerobic processes of wastes are also reviewed. We especially discuss the fundamentals in applying micro-aerobic conditions to remove dissolved hydrogen sulphide from the aqueous phase of an anaerobic reactor. The alternative technology of simultaneous removal of sulphide, nitrate, and organic matter is under recent investigation. Therefore, this review paper includes a study and analysis of the microbiological basis of this technology, the physical and chemical factors that influence the process and the potential application of this technology on different types of wastewaters and situations. Also considered are the fundamentals of both biofilm reactors and microbial fuel cells desulphurization. Because relatively few studies on modeling desulphurisation processes are available, we discuss the advances made in that area.
Keywords: anaerobic; denitrifying sulphide; desulphurization; microaerobic; modeling
|
Jerez-Hanckes, C., Pettersson, I., & Rybalko, V. (2020). Derivation Of Cable Equation By Multiscale Analysis For A Model Of Myelinated Axons. Discrete Contin. Dyn. Syst.-Ser. B, 25(3), 815–839.
Abstract: We derive a one-dimensional cable model for the electric potential propagation along an axon. Since the typical thickness of an axon is much smaller than its length, and the myelin sheath is distributed periodically along the neuron, we simplify the problem geometry to a thin cylinder with alternating myelinated and unmyelinated parts. Both the microstructure period and the cylinder thickness are assumed to be of order epsilon, a small positive parameter. Assuming a nonzero conductivity of the myelin sheath, we find a critical scaling with respect to epsilon which leads to the appearance of an additional potential in the homogenized nonlinear cable equation. This potential contains information about the geometry of the myelin sheath in the original three-dimensional model.
|
Lagos, G., Espinoza, D., Moreno, E., & Vielma, J. P. (2015). Restricted risk measures and robust optimization. Eur. J. Oper. Res., 241(3), 771–782.
Abstract: In this paper we consider characterizations of the robust uncertainty sets associated with coherent and distortion risk measures. In this context we show that if we are willing to enforce the coherent or distortion axioms only on random variables that are affine or linear functions of the vector of random parameters, we may consider some new variants of the uncertainty sets determined by the classical characterizations. We also show that in the finite probability case these variants are simple transformations of the classical sets. Finally we present results of computational experiments that suggest that the risk measures associated with these new uncertainty sets can help mitigate estimation errors of the Conditional Value-at-Risk. (C) 2014 Elsevier B.V. All rights reserved.
|
Leiva, V., Ferreira, M., Gomes, M. I., & Lillo, C. (2016). Extreme value Birnbaum-Saunders regression models applied to environmental data. Stoch. Environ. Res. Risk Assess., 30(3), 1045–1058.
Abstract: Extreme value models are widely used in different areas. The Birnbaum-Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum-Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
|