|
Nandhakumar, E., Selvakumar, P., Arulraj, A., Vivek, E., Venkatraman, M. R., Sasikumar, A., et al. (2023). Investigation on rod like SnO2@CdCO3 nanocomposite-based electron transport layer for CsPbBr3 heterojunction perovskite solar cell applications br. Mater. Lett., 330, 133396.
Abstract: A novel carbonate-based nanocomposite synthesized by hydrothermal technique for planar perovskite solar cells (PPSCs) applications. According to this study, SnO2@CdCO3and SnO2/SnO2@CdCO3 performs as dual electron transporting layers for CsPbBr3 based perovskite solar cell. The fabricated PSCs with architecture of FTO/SnO2/ SnO2@CdCO3/CsPbBr3/C showed a Voc of 0.84 V, Jsc of 12.30 mA cmi 2, PCE of 6.67 % and FF of 0.64 are obtained at ambient condition.
|
|
|
Thandapani, P., Aepuru, R., Beron, F., Mangalaraja, R. V., Varaprasad, K., Zabotto, F. L., et al. (2023). Multiferroic Electroactive Polymer Blend/Ferrite Nanocomposite Flexible Films for Cooling Devices. ACS Appl. Polym. Mater., 5(8), 5926–5936.
Abstract: In recent days, the interest toward the development ofmulticaloricmaterials for cooling application is increasing, whereas multiferroicmaterials would be the suitable alternative to the conventional refrigerants.To explore them, the poly(methyl methacrylate)/poly(vinylidenefluoride-co-hexafluoropropylene) (PMMA/PVDF-HFP) blend and PMMA/PVDF-HFP/Zn0.5Cu0.5Fe2O4 flexible multiferroicnanocomposite films were fabricated by the solution casting method.The structural analyses prove that the strong interfacial interactionbetween the PMMA/PVDF-HFP blend and the Zn0.5Cu0.5Fe2O4 (ZCF) through hydroxyl (-OH) andcarbonyl group bonding with PVDF-HFP enhanced the thermal stabilityand suppressed the electroactive & beta; phase from 67 to 62%. Experimentalresults show that 10 wt % of superparamagnetic ZCF nanoparticles witha particle size of 6.8 nm induced both the magnetocaloric and magnetoelectriceffects in a nonmagnetic PMMA/PVDF-HFP ferroelectric matrix at roomtemperature. A set of isothermal magnetization curves were recordedin the magnetic field strength of 0-40 kOe and a temperaturerange of 2-400 K. The maximum magnetic entropy changes (& UDelta;S (M)) of -0.69 J & BULL;kg(-1) K-1 of ZCF nanoparticles and -0.094 J & BULL;kg(-1) K-1 of PMMA/PVDF-HFP/ZCF nanocompositesshowed an interesting table-like flat variation in the temperaturerange of 100-400 K as a function of the magnetic field. Thesamples display a large temperature span with a relative cooling power of 293 and 40 J & BULL;kg(-1) for ZCF and PMMA/PVDF-HFP/ZCF,respectively. The magnetoelectric effect of the PMMA/PVDF-HFP/ZCFcomposite was proved, but it generated only 1.42 mV/m & BULL;Oe in theapplied field of 5 kOe. Hence, the entropy change of the present nanocompositewas only due to the magnetocaloric effect, where the magnetoelectriccross-coupling coefficient was negligible. The multicaloric effectcould be established if the nanocomposite showed a larger magnetoelectriccross-coupling in addition to the magnetocaloric effect. This approachprovides the research findings in functional multiferroic polymernanocomposites for miniaturized cooling devices.
|
|