Bustos, C., Herrera, C. G., Celentano, D., Chen, D. M., & Cruchaga, M. (2016). Numerical Simulation and Experimental Validation of the Inflation Test of Latex Balloons. Lat. Am. J. Solids Struct., 13(14), 2357–2378.
Abstract: Experiments and modeling aimed at assessing the mechanical response of latex balloons in the inflation test are presented. To this end, the hyperelastic Yeoh material model is firstly characterized via tensile test and, then, used to numerically simulate via finite elements the stressstrain evolution during the inflation test. The numerical pressuredisplacement curves are validated with those obtained experimentally. Moreover, this analysis is extended to a biomedical problem of an eyeball under glaucoma conditions.

During, G., Josserand, C., & Rica, S. (2017). Wave turbulence theory of elastic plates. Physica D, 347, 42–73.
Abstract: This article presents the complete study of the longtime evolution of random waves of a vibrating thin elastic plate in the limit of small plate deformation so that modes of oscillations interact weakly. According to the wave turbulence theory a nonlinear wave system evolves in longtime creating a slow redistribution of the spectral energy from one mode to another. We derive step by step, following the method of cumulants expansion and multiscale asymptotic perturbations, the kinetic equation for the second order cumulants as well as the second and fourth order renormalization of the dispersion relation of the waves. We characterize the nonequilibrium evolution to an equilibrium wave spectrum, which happens to be the well known RayleighJeans distribution. Moreover we show the existence of an energy cascade, often called the KolmogorovZakharov spectrum, which happens to be not simply a power law, but a logarithmic correction to the Rayleigh Jeans distribution. We perform numerical simulations confirming these scenarii, namely the equilibrium relaxation for closed systems and the existence of an energy cascade wave spectrum. Both show a good agreement between theoretical predictions and numerics. We show also some other relevant features of vibrating elastic plates, such as the existence of a selfsimilar wave action inverse cascade which happens to blowup in finite time. We discuss the mechanism of the wave breakdown phenomena in elastic plates as well as the limit of strong turbulence which arises as the thickness of the plate vanishes. Finally, we discuss the role of dissipation and the connection with experiments, and the generalization of the wave turbulence theory to elastic shells. (C) 2017 Elsevier B.V. All rights reserved.
