|
Borquez-Paredes, D., Beghelli, A., Leiva, A., & Murrugarra, R. (2018). Does fragmentation avoidance improve the performance of dynamic spectrum allocation in elastic optical networks? Photonic Netw. Commun., 35(3), 287–299.
Abstract: Most spectrum allocation algorithms in elastic optical networks apply a greedy approach: A new connection is allocated as long as there are enough spectrum slots to accommodate it. Recently, a different approach was proposed. Named Deadlock-Avoidance (DA), it only establishes a new connection if the portion of spectrum left after allocating it is zero (full-link utilization) or is big enough to accommodate future requests. Otherwise, the connection request is blocked as a way to avoid fragmentation. The performance of DA has been evaluated in a single-link scenario, where its performance is not affected by the slot continuity constraint. In this paper, we evaluate for the first time the blocking performance and fragmentation level of DA in a fully dynamic network scenario with different bitrates and number of slots for a single link, a 4-node bus and a mesh topology. The performance was evaluated by simulation, and a lower bound was also derived using a continuous Markov chain model. Results are obtained for DA and three greedy algorithms: First Fit, Exact Fit and First-Last Fit. Results show that DA significantly decreases fragmentation, and thus, it exhibits a much lower blocking due to fragmentation than the greedy algorithms. However, this decrease is compensated by a new type of blocking due to the selective acceptance of connections. As a result, the extra computational complexity of DA does not compensate a gain in performance.
|
|
|
Calderón, F., Lozada, A., Morales, P., Bórquez-Paredes, D., Jara, N., Olivares, R., et al. (2022). Heuristic Approaches for Dynamic Provisioning in Multi-band Elastic Optical Networks. IEEE Commun. Lett., 26(2), 379–383.
Abstract: Multi-band elastic optical networks are a promising alternative to meet the bandwidth demand of the ever-growing Internet traffic. In this letter, we propose a family of band allocation algorithms for multi-band elastic optical networks. Employing simulation, we evaluate the blocking performance of 3 algorithms of such a family and compare their performance with the only heuristic proposed to date. Results show that the three new algorithms outperform the previous proposal, with up to one order of magnitude improvement. We expect these results to help advance the area of dynamic resource allocation in multi-band elastic optical networks.
|
|
|
Calderon, F. I., Lozada, A., Borquez-Paredes, D., Olivares, R., Davalos, E. J., Saavedra, G., et al. (2020). BER-Adaptive RMLSA Algorithm for Wide-Area Flexible Optical Networks. IEEE Access, 8, 128018–128031.
Abstract: Wide-area optical networks face significant transmission challenges due to the relentless growth of bandwidth demands experienced nowadays. Network operators must consider the relationship between modulation format and maximum reach for each connection request due to the accumulation of physical layer impairments in optical fiber links, to guarantee a minimum quality of service (QoS) and quality of transmission (QoT) to all connection requests. In this work, we present a BER-adaptive solution to solve the routing, modulation format, and spectrum assignment (RMLSA) problem for wide-area elastic optical networks. Our main goal is to maximize successful connection requests in wide-area networks while choosing modulation formats with the highest efficiency possible. Consequently, our technique uses an adaptive bit-error-rate (BER) threshold to achieve communication with the best QoT in the most efficient manner, using the strictest BER value and the modulation format with the smallest bandwidth possible. Additionally, the proposed algorithm relies on 3R regeneration devices to enable long-distances communications if transparent communication cannot be achieved. We assessed our method through simulations for various network conditions, such as the number of regenerators per node, traffic load per user, and BER threshold values. In a scenario without regenerators, the BER-Adaptive algorithm performs similarly to the most relaxed fixed BER threshold studied in blocking probability. However, it ensures a higher QoT to most of the connection requests. The proposed algorithm thrives with the use of regenerators, showing the best performance among the studied solutions, enabling long-distance communications with a high QoT and low blocking probability.
|
|
|
Leiva, A., Pavez, N., Beghelli, A., & Olivares, R. (2015). A Joint RSA Algorithm for Dynamic Flexible Optical Networking. IEEE Latin Am. Trans., 13(11), 3531–3537.
Abstract: We propose a novel algorithm to solve the Routing and Spectrum Allocation (RSA) problem in dynamic flexible grid optical networks. Unlike most previous proposals, the algorithm solves the R and SA problems jointly by exhaustively searching the solution space and taking the network state into account. As a result, the shortest possible path with enough spectrum availability is allocated to establish the connections. Simulation results show that, in terms of blocking ratio, our proposal significantly outperforms previously proposed algorithms. In some cases, the performance is better by more than one order of magnitude.
|
|
|
Lozada, A., Calderon, F., Kasaneva, J. N., Borquez-Paredes, D., Olivares, R., Beghelli, A., et al. (2021). Impact of Amplification and Regeneration Schemes on the Blocking Performance and Energy Consumption of Wide-Area Elastic Optical Networks. IEEE Access, 9, 134355–134368.
Abstract: This paper studies the physical layer's impact on the blocking probability and energy consumption of wide-area dynamic elastic optical networks (EONs). For this purpose, we consider five network configurations, each named with a network configuration identifier (NCI) from 1 to 5, for which the Routing, Modulation Level, and Spectrum Assignment (RMLSA) problem is solved. NCI 1-4 are transparent configurations based on all-EDFA, hybrid Raman/EDFA amplifiers (with different Raman gain ratio Gamma(R)), all-DFRA, and alternating span configuration (EDFA and DFRA). NCI 5 is a translucent configuration based on all-EDFA and 3R regenerators. We model the physical layer for every network configuration to determine the maximum achievable reach of optical signals. Employing simulation, we calculate the blocking probability and the energy consumption of the different network configurations. In terms of blocking, our results show that NCI 2 and 3 offer the lowest blocking probability, with at least 1 and 3 orders of magnitude of difference with respect to NCI 1 and 5 at high and low traffic loads, respectively. In terms of energy consumption, the best performing alternatives are the ones with the worst blocking (NCI 1), while NCI 3 exhibits the highest energy consumption with NCI Gamma(R) = 0.75 following closely. This situation highlights a clear trade-off between blocking performance and energy cost that must be considered when designing a dynamic EON. Thus, we identify NCI 2 using Gamma(R) = 0.25 as a promising alternative to reduce the blocking probability significantly in wide-area dynamic EONs without a prohibitive increase in energy consumption.
|
|
|
Morales, P., Lozada, A., Borquez-Paredes, D., Olivares, R., Saavedra, G., Leiva, A., et al. (2021). Improving the Performance of SDM-EON Through Demand Prioritization: A Comprehensive Analysis. IEEE Access, 9, 63475–63490.
Abstract: This paper studies the impact of demand-prioritization on Space-Division Multiplexing Elastic Optical Networks (SDM-EON). For this purpose, we solve the static Routing, Modulation Level, Spatial Mode, and Spectrum Assignment (RMLSSA) problem using 34 different explainable demand-prioritization strategies. Although previous works have applied heuristics or meta-heuristics to perform demand-prioritization, they have not focused on identifying the best prioritization strategies, their inner operation, and the implications behind their good performance by thorough profiling and impact analysis. We focus on a comprehensive analysis identifying the best explainable strategies to sort network demands in SDM-EON, considering the physical-layer impairments found in optical communications. Also, we show that simply using the common shortest path routing might lead to higher resource requirements. Extensive simulation results show that up to 8.33% capacity savings can be achieved on average by balanced routing, up to a 16.69% capacity savings can be achieved using the best performing demand-prioritization strategy compared to the worst-performing ones, the most used demand-prioritization strategy in the literature (serving demands with higher bandwidth requirements first) is not the best-performing one but the one sorting based on the path lengths, and using double-criteria strategies to break ties is key for a good performance. These results are relevant showing that a good combination of routing and demand-prioritization heuristics impact significantly on network performance. Additionally, they increase the understanding about the inner workings of good heuristics, a valuable knowledge when network settings forbid using more computationally complex approaches.
|
|
|
Tarifeno-Gajardo, M., Beghelli, A., & Moreno, E. (2016). Availability-Driven Optimal Design of Shared Path Protection in WDM Networks. Networks, 68(3), 224–237.
Abstract: Availability, defined as the fraction of time a network service is operative, is a key network service parameter. Dedicated protection increases availability but also the cost. Shared protection instead decreases the cost, but also the availability. In this article, we formulate and solve an integer linear programming (ILP) model for the problem of minimizing the backup resources required by a shared-protected static optical network whilst guaranteeing an availability target per connection. The main research challenge is dealing with the nonlinear expression for the availability constraint. Taking the working/backup routes and the availability requirements as input data, the ILP model identifies the set of connections sharing backup resources in any given network link. We also propose a greedy heuristic to solve large instances in much shorter time than the ILP model with low levels of relative error (2.49% average error in the instances studied) and modify the ILP model to evaluate the impact of wavelength conversion. Results show that considering availability requirements can lead up to 56.4% higher backup resource requirements than not considering them at all, highlighting the importance of availability requirements in budget estimation. (C) 2016 Wiley Periodicals, Inc.
|
|