|
Casalino, G., Castellano, G., Hryniewicz, O., Leite, D., Opara, K., Radziszewska, W., et al. (2023). Semi-Supervised vs. Supervised Learning for Mental Health Monitoring: A Case Study on Bipolar Disorder. Int. J. Appl. Math. Comput. Sci., 33(3), 419–428.
Abstract: Acoustic features of speech are promising as objective markers for mental health monitoring. Specialized smartphone apps can gather such acoustic data without disrupting the daily activities of patients. Nonetheless, the psychiatric assessment of the patient's mental state is typically a sporadic occurrence that takes place every few months. Consequently, only a slight fraction of the acoustic data is labeled and applicable for supervised learning. The majority of the related work on mental health monitoring limits the considerations only to labeled data using a predefined ground-truth period. On the other hand, semi-supervised methods make it possible to utilize the entire dataset, exploiting the regularities in the unlabeled portion of the data to improve the predictive power of a model. To assess the applicability of semi-supervised learning approaches, we discuss selected state-of-the-art semi-supervised classifiers, namely, label spreading, label propagation, a semi-supervised support vector machine, and the self training classifier. We use real-world data obtained from a bipolar disorder patient to compare the performance of the different methods with that of baseline supervised learning methods. The experiment shows that semi-supervised learning algorithms can outperform supervised algorithms in predicting bipolar disorder episodes.
|
|
|
Salas, R., Allende, H., Moreno, S., & Saavedra, C. (2005). Flexible Architecture of Self Organizing Maps for changing environments. Lect. Notes Comput. Sc., 3773, 642–653.
Abstract: Catastrophic Interference is a well known problem of Artificial Neural Networks (ANN) learning algorithms where the ANN forget useful knowledge while learning from new data. Furthermore the structure of most neural models must be chosen in advance. In this paper we introduce a hybrid algorithm called Flexible Architecture of Self Organizing Maps (FASOM) that overcomes the Catastrophic Interference and preserves the topology of Clustered data in changing environments. The model consists in K receptive fields of self organizing maps. Each Receptive Field projects high-dimensional data of the input space onto a neuron position in a low-dimensional output space grid by dynamically adapting its structure to a specific region of the input space. Furthermore the FASOM model automatically finds the number of maps and prototypes needed to successfully adapt to the data. The model has the capability of both growing its structure when novel clusters appears and gradually forgets when the data volume is reduced in its receptive fields. Finally we show the capabilities of our model with experimental results using synthetic sequential data sets and real world data.
|
|