Home  << 1 >> 
Espinoza, D., Goycoolea, M., Moreno, E., & Newman, A. (2013). MineLib: a library of open pit mining problems. Ann. Oper. Res., 206(1), 93–114.
Abstract: Similar to the mixedinteger programming library (MIPLIB), we present a library of publicly available test problem instances for three classical types of open pit mining problems: the ultimate pit limit problem and two variants of open pit production scheduling problems. The ultimate pit limit problem determines a set of notional threedimensional blocks containing ore and/or waste material to extract to maximize value subject to geospatial precedence constraints. Open pit production scheduling problems seek to determine when, if ever, a block is extracted from an open pit mine. A typical objective is to maximize the net present value of the extracted ore; constraints include precedence and upper bounds on operational resource usage. Extensions of this problem can include (i) lower bounds on operational resource usage, (ii) the determination of whether a block is sent to a waste dump, i.e., discarded, or to a processing plant, i.e., to a facility that derives salable mineral from the block, (iii) average grade constraints at the processing plant, and (iv) inventories of extracted but unprocessed material. Although open pit mining problems have appeared in academic literature dating back to the 1960s, no standard representations exist, and there are no commonly available corresponding data sets. We describe some representative open pit mining problems, briefly mention related literature, and provide a library consisting of mathematical models and sets of instances, available on the Internet. We conclude with directions for use of this newly established mining library. The library serves not only as a suggestion of standard expressions of and available data for open pit mining problems, but also as encouragement for the development of increasingly sophisticated algorithms.

Letelier, O. R., Espinoza, D., Goycoolea, M., Moreno, E., & Munoz, G. (2020). Production Scheduling for Strategic Open Pit Mine Planning: A MixedInteger Programming Approach. Oper. Res., 68(5), 1425–1444.
Abstract: Given a discretized representation of an ore body known as a block model, the open pit mining production scheduling problem that we consider consists of defining which blocks to extract, when to extract them, and how or whether to process them, in such a way as to comply with operational constraints and maximize net present value. Although it has been established that this problem can be modeled with mixedinteger programming, the number of blocks used to represent realworld mines (millions) has made solving large instances nearly impossible in practice. In this article, we introduce a new methodology for tackling this problem and conduct computational tests using real problem sets ranging in size from 20,000 to 5,000,000 blocks and spanning 20 to 50 time periods. We consider both direct block scheduling and benchphase scheduling problems, with capacity, blending, and minimum production constraints. Using new preprocessing and cutting planes techniques, we are able to reduce the linear programming relaxation value by up to 33%, depending on the instance. Then, using new heuristics, we are able to compute feasible solutions with an average gap of 1.52% relative to the previously computed bound. Moreover, after four hours of running a customized branchandbound algorithm on the problems with larger gaps, we are able to further reduce the average from 1.52% to 0.71%.
