Home | << 1 >> |
Cabrera, M., Cordova-Lepe, F., Gutierrez-Jara, J. P. -, & Vogt-Geisse, K. (2021). An SIR-type epidemiological model that integrates social distancing as a dynamic law based on point prevalence and socio-behavioral factors. Sci. Rep., 11(1), 10170.
Abstract: Modeling human behavior within mathematical models of infectious diseases is a key component to understand and control disease spread. We present a mathematical compartmental model of Susceptible-Infectious-Removed to compare the infected curves given by four different functional forms describing the transmission rate. These depend on the distance that individuals keep on average to others in their daily lives. We assume that this distance varies according to the balance between two opposite thrives: the self-protecting reaction of individuals upon the presence of disease to increase social distancing and their necessity to return to a culturally dependent natural social distance that occurs in the absence of disease. We present simulations to compare results for different society types on point prevalence, the peak size of a first epidemic outbreak and the time of occurrence of that peak, for four different transmission rate functional forms and parameters of interest related to distancing behavior, such as: the reaction velocity of a society to change social distance during an epidemic. We observe the vulnerability to disease spread of close contact societies, and also show that certain social distancing behavior may provoke a small peak of a first epidemic outbreak, but at the expense of it occurring early after the epidemic onset, observing differences in this regard between society types. We also discuss the appearance of temporal oscillations of the four different transmission rates, their differences, and how this oscillatory behavior is impacted through social distancing; breaking the unimodality of the actives-curve produced by the classical SIR-model.
Keywords: EFFECTIVE REPRODUCTION NUMBER; INFECTIOUS-DISEASE; TRANSMISSION; COVID-19; BEHAVIOR; CHALLENGES; AWARENESS; IMPACT; RISK
|
Cheng, Y. C., Watari, T., Seccatore, J., Nakajima, K., Nansai, K., & Takaoka, M. (2023). A review of gold production, mercury consumption, and emission in artisanal and small-scale gold mining (ASGM). Resour. Policy, 81, 103370.
Abstract: Artisanal and small-scale gold mining (ASGM) is one of the largest sources of Hg emissions and is critical for addressing the Hg problem. Due to scarce and punctual statistics provided by governments and agencies, there is almost no accurate data on ASGM production, Hg use, and emissions. In this study, we surveyed different ap-proaches to estimate ASGM production and collected data from different sources, including academic papers and technical reports. Globally, 380-870 tonnes of gold is produced by ASGM each year, with a median value of 520 tonnes. The Hg use in the ASGM sector was estimated to be 640-1000 tonnes each year, with a median value of 892 tonnes. Consequently, 248-838 tonnes of Hg are emitted from the ASGM sector each year, with a median value of 615 tonnes. However, significant discrepancies were found in the data calculated using different ap-proaches, particularly in countries where the estimates were large, such as China. To obtain a more accurate picture of global ASGM activities, a general estimation approach combining specific studies of dominant coun-tries is necessary. For better management of ASGM in the future, developing a solid baseline and comprehensive future projection scenarios and establishing international collaboration to construct guidance on ASGM are recommended.
|
Elangovan, K., Saravanan, P., Campos, C. H., Sanhueza-Gómez, F., Khan, M. M. R., Chin, S. Y., et al. (2023). Outline of microbial fuel cells technology and their significant developments, challenges, and prospects of oxygen reduction electrocatalysts. Front. Chem. Eng., 5, 1228510.
Abstract: The microbial fuel cells (MFCs) which demonstrates simultaneous production of electricity and wastewater treatment have been considered as one of the potential and greener energy production technology among the available bioelectrochemical systems. The air-cathode MFCs have gained additional benefits due to using air and avoiding any chemical substances as catholyte in the cathode chamber. The sluggish oxygen reduction reaction (ORR) kinetics at the cathode is one of the main obstacles to achieve high microbial fuel cell (MFC) performances. Platinum (Pt) is one of the most widely used efficient ORR electrocatalysts due to its high efficient and more stable in acidic media. Because of the high cost and easily poisoned nature of Pt, several attempts, such as a combination of Pt with other materials, and using non-precious metals and non-metals based electrocatalysts has been demonstrated. However, the efficient practical application of the MFC technology is not yet achieved mainly due to the slow ORR. Therefore, the review which draws attention to develop and choosing the suitable cathode materials should be urgent for the practical applications of the MFCs. In this review article, we present an overview of the present MFC technology, then some significant advancements of ORR electrocatalysts such as precious metals-based catalysts (very briefly), non-precious metals-based, non-metals and carbon-based, and biocatalysts with some significant remarks on the corresponding results for the MFC applications. Lastly, we also discussed the challenges and prospects of ORR electrocatalysts for the practical application of MFCs.
|
Espinoza, D., Goycoolea, M., Moreno, E., & Newman, A. (2013). MineLib: a library of open pit mining problems. Ann. Oper. Res., 206(1), 93–114.
Abstract: Similar to the mixed-integer programming library (MIPLIB), we present a library of publicly available test problem instances for three classical types of open pit mining problems: the ultimate pit limit problem and two variants of open pit production scheduling problems. The ultimate pit limit problem determines a set of notional three-dimensional blocks containing ore and/or waste material to extract to maximize value subject to geospatial precedence constraints. Open pit production scheduling problems seek to determine when, if ever, a block is extracted from an open pit mine. A typical objective is to maximize the net present value of the extracted ore; constraints include precedence and upper bounds on operational resource usage. Extensions of this problem can include (i) lower bounds on operational resource usage, (ii) the determination of whether a block is sent to a waste dump, i.e., discarded, or to a processing plant, i.e., to a facility that derives salable mineral from the block, (iii) average grade constraints at the processing plant, and (iv) inventories of extracted but unprocessed material. Although open pit mining problems have appeared in academic literature dating back to the 1960s, no standard representations exist, and there are no commonly available corresponding data sets. We describe some representative open pit mining problems, briefly mention related literature, and provide a library consisting of mathematical models and sets of instances, available on the Internet. We conclude with directions for use of this newly established mining library. The library serves not only as a suggestion of standard expressions of and available data for open pit mining problems, but also as encouragement for the development of increasingly sophisticated algorithms.
|
Girard, A., Gago, E. J., Ordonez, J., & Muneer, T. (2016). Spain's energy outlook: A review of PV potential and energy export. Renew. Energy, 86, 703–715.
Abstract: Spain must reduce its energy consumption by 23% and achieve 100% renewable energy in electricity generation by 2030. This paper presents the current energy scenario en Spain, and the outlooks for different renewable options, with special focus on photovoltaic (PV) solar energy. In 2012, Spain was the number two European country in terms of installed rewnewable energy power. Solar PV technology has the potential to meet Spain's future energy demand and its associated environmental challenges. This paper gives a review of solar energy economy at global scale for both PV and thermal power technologies. The Spanish energy scenario shows actual trends and progress made by solar power. Economic concepts of levelised cost of electricity and grid parity are presented. The financial analysis shows that PV electricity achieves grid parity at a plant profitability rate up to 7.26%. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords: Solar energy; Spain; Electricity production; Economy; Grid parity
|
Herrera, M. N. (2023). The contribution of the Chilean mining industry to the achievement of the 17 sustainable development goals. Geosystem Eng., 25(3-4), 64–82.
Abstract: Chile is a world leader in copper production and is expected to reach production of around 6,237,000 tons of fine copper by 2022. On the other hand, in 2021 the production of copper by the hydrometallurgical route reached 1,509,000 tons and that of the smelting and refining route was 4,606,000 tons. Considering this production scenario, this article describes in a general way the contributions that the Chilean mining industry has made to the fulfillment of the 17 sustainable development goals, SDGs. The main advances are highlighted, besides discussing the main pending tasks to comply with the commitments made by Chile towards the international community.
Keywords: copper; mining; production; sustainable development
|
Kapitanov, G., Alvey, C., Vogt-Geisse, K., & Feng, Z. L. (2015). An Age-Structured Model For The Coupled Dynamics Of Hiv And Hsv-2. Math. Biosci. Eng., 12(4), 803–840.
Abstract: Evidence suggests a strong correlation between the prevalence of HSV-2 (genital herpes) and the perseverance of the HIV epidemic. HSV-2 is an incurable viral infection, characterized by periodic reactivation. We construct a model of the co-infection dynamics between the two diseases by incorporating a time-since-infection variable to track the alternating periods of infectiousness of HSV-2. The model considers only heterosexual relationships and distinguishes three population groups: males, general population females, and female sex workers. We calculate the basic reproduction numbers for each disease that provide threshold conditions, which determine whether a disease dies out or becomes endemic in the absence of the other disease. We also derive the invasion reproduction numbers that determine whether or not a disease can invade into a population in which the other disease is endemic. The calculations of the invasion reproduction numbers suggest a new aspect in their interpretation – the class from which the initial disease carrier arises is important for understanding the invasion dynamics and biological interpretation of the expressions of the reproduction numbers. Sensitivity analysis is conducted to examine the role of model parameters in influencing the model outcomes. The results are discussed in the last section.
|
Lardies, M. A., & Wehrtmann, I. S. (2011). Gonadal development in males of Notocrangon antarcticus (Decapoda: Caridea) from the Weddell Sea, Antarctica. Polar Biol., 34(5), 707–713.
Abstract: Our knowledge on reproductive traits of marine decapods is mainly based on studies concerning reproductive features of females, while the description of trends in reproductive cycles for males are scarce. Here, we analyzed the gonad development and the seasonal variation of the gonadosomatic index (GSI) of male Notocrangon antarcticus (N = 106; collected between 1986 and 1992; Weddell Sea), one of the most common caridean shrimp inhabiting the Antarctica. Male size ranged from 10.2 to 17.7 mm CL (carapax length), and individuals were significantly larger in autumn. The length of appendix masculina increased with male size, and there was no evidence for sex reversal, corroborating the assumption of dioceism in N. antarcticus. The average dry weight of the males was highest (mean 0.39) in autumn. The highest and lowest gonad dry weights were obtained from summer samples; however, we did not detect significant differences among seasons. The highest mean GSI was calculated for individuals collected in summer, and mean GSI was significantly different between summer-autumn and summer-spring, but not in autumn-spring. The GSI remained practically constant, independent of male CL. The size at sexual maturity was 13.8 mm CL, a size smaller than previously reported for N. antarcticus. The results obtained demonstrate that peak reproductive productivity of male N. antarcticus is during the summer months, when abundant nutritional resources are available.
|
Lardies, M. A., Arias, M. B., & Bacigalupe, L. D. (2010). Phenotypic covariance matrix in life-history traits along a latitudinal gradient: a study case in a geographically widespread crab on the coast of Chile. Mar. Ecol.-Prog. Ser., 412, 179–187.
Abstract: Geographically widely spread species can cope with environmental differences among habitats by genetic differentiation and/or phenotypic flexibility. In marine crustaceans, intraspecific variations in life-history traits are pervasive along latitudinal clines. Replicated latitudinal clines are of evolutionary interest because they provide evidence of the occurrence of natural selection. If the means of traits along the latitudinal gradient are expected to be the result of natural selection, there is no reason why variances and covariances will not also be subject to selection, since selection is essentially a multivariate phenomenon. We studied life-history changes in means, variances, and covariances (i.e. P matrix) in 6 populations of the endemic crab Cyclograpsus cinereus (Decapoda: Grapsidae) along a latitudinal gradient over 19 degrees on the Chilean coast. Trait means differed among localities for all traits analyzed (i.e. female size, number and size of eggs, and reproductive output), and the variation displayed a clinal pattern. In general, the main result that emerged from planned comparisons of P matrices is that, when detected, differences between localities mainly reflect differences in the magnitude of phenotypic variation (i.e. eigenvalues), rather than in the relationships between traits (i.e. eigenvectors). Sea-surface temperature was only correlated with the covariance between egg numbers and reproductive output. Matrices comparisons for Flury and jackknife methods were highly linked, with limits of biogeographic provinces described for the coast of Chile. Our study strongly highlights the importance of estimating the P matrix, not only mean values, in order to understand the evolution of life-history traits along a latitudinal gradient. Furthermore, the study of the variation in the P matrix might provide important insights into those evolutionary forces acting on it.
Keywords: Intertidal; Reproduction; Crustacea; Plasticity; Clinical variation
|
Letelier, O. R., Clautiaux, F., & Sadykov, R. (2022). Bin Packing Problem with Time Lags. INFORMS J. Comput., Early Access.
Abstract: We introduce and motivate several variants of the bin packing problem where bins are assigned to time slots, and minimum and maximum lags are required between some pairs of items. We suggest two integer programming formulations for the general problem: a compact one and a stronger formulation with an exponential number of variables and constraints. We propose a branch-cut-and-price approach that exploits the latter formulation. For this purpose, we devise separation algorithms based on a mathematical characterization of feasible assignments for two important special cases of the problem: when the number of possible bins available at each period is infinite and when this number is limited to one and time lags are nonnegative. Computational experiments are reported for instances inspired from a real-case application of chemical treatment planning in vineyards, as well as for literature instances for special cases of the problem. The experimental results show the efficiency of our branch-cutand-price approach, as it outperforms the compact formulation on newly proposed instances and is able to obtain improved lower and upper bounds for literature instances. Summary of Contribution: The paper considers a new variant of the bin packing problem, which is one of the most important problems in operations research. A motivation for introducing this variant is given, as well as a real-life application. We present a novel and original exact branch-cut-and-price algorithm for the problem. We implement this algorithm, and we present the results of extensive computational experiments. The results show a very good performance of our algorithm. We give several research directions that can be followed by subsequent researchers to extend our contribution to more complex and generic problems.
|
Letelier, O. R., Espinoza, D., Goycoolea, M., Moreno, E., & Munoz, G. (2020). Production Scheduling for Strategic Open Pit Mine Planning: A Mixed-Integer Programming Approach. Oper. Res., 68(5), 1425–1444.
Abstract: Given a discretized representation of an ore body known as a block model, the open pit mining production scheduling problem that we consider consists of defining which blocks to extract, when to extract them, and how or whether to process them, in such a way as to comply with operational constraints and maximize net present value. Although it has been established that this problem can be modeled with mixed-integer programming, the number of blocks used to represent real-world mines (millions) has made solving large instances nearly impossible in practice. In this article, we introduce a new methodology for tackling this problem and conduct computational tests using real problem sets ranging in size from 20,000 to 5,000,000 blocks and spanning 20 to 50 time periods. We consider both direct block scheduling and bench-phase scheduling problems, with capacity, blending, and minimum production constraints. Using new preprocessing and cutting planes techniques, we are able to reduce the linear programming relaxation value by up to 33%, depending on the instance. Then, using new heuristics, we are able to compute feasible solutions with an average gap of 1.52% relative to the previously computed bound. Moreover, after four hours of running a customized branch-and-bound algorithm on the problems with larger gaps, we are able to further reduce the average from 1.52% to 0.71%.
|
Pabon-Pereira, C., Slingerland, M., Hogervorst, S., van Lier, J., & Rabbinge, R. (2019). A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability, 11(14), 23 pp.
Abstract: This paper shows how system design determines sustainability outcomes of cassava bioethanol production in Colombia. The recovery of the energy contained in by-products is recommended as compared to single product production. In particular, this study assesses the energy, greenhouse gases, water, and land use performance of alternative cassava cascades working at different scales, highlighting the implications of including anaerobic digestion technology in the chain. The centralized systems showed a poorer energy and greenhouse gases performance as compared to decentralized ones in part due to the artificial drying of cassava chips in the centralized facility. Under solar drying of cassava chips, systems with anaerobic digestion produced three to five times more energy than demanded and produced greenhouse gas savings of 0.3 kgCO(2eq) L EtOH-1. The water balance output depends upon the water reuse within the ethanol industry, which demands 21-23 L EtOH-1. In the anaerobic digestion scenarios, assuming liquid flows are treated separately, complete water recovery is feasible. Land use for cassava cultivation was calculated to be 0.27-0.35 ha tEtOH(-1). The energy and water content of the material to digest, the options for digestate reuse, and the recovery of the methane produced are major considerations substantially influencing the role of anaerobic digestion within cassava cascade configurations.
Keywords: cassava; bioethanol; energy crops; sustainability analysis; biofuels; bioenergy production
|
Pereira, J. (2018). The robust (minmax regret) assembly line worker assignment and balancing problem. Comput. Oper. Res., 93, 27–40.
Abstract: Line balancing aims to assign the assembly tasks to the stations that compose the assembly line. A recent body of literature has been devoted to heterogeneity in the assembly process introduced by different workers. In such an environment, task times depend on the worker performing the operation and the problem aims at assigning tasks and workers to stations in order to maximize the throughput of the line. In this work, we consider an interval data version of the assembly line worker assignment and balancing problem (ALWABP) in which it is assumed that lower and upper bounds for the task times are known, and the objective is to find an assignment of tasks and workers to the workstations such that the absolute maximum regret among all of the possible scenarios is minimized. The relationship with other interval data minmax regret (IDMR) problems is investigated, the inapplicability of previous approximation methods is studied, regret evaluation is considered, and exact and heuristic solution methods are proposed and analyzed. The results of the proposed methods are compared in a computational experiment, showing the applicability of the method and the theoretical results to solve the problem under study. Additionally, these results are not only applicable to the problem in hand, but also to a more general class of problems. (C) 2018 Elsevier Ltd. All rights reserved.
Keywords: Production; Line balancing; Robust optimization; Minmax regret
|
Puig-Castellvi, F., Midoux, C., Guenne, A., Conteau, D., Franchi, O., Bureau, C., et al. (2022). A longitudinal study of the effect of temperature modification in full-scale anaerobic digesters – dataset combining 16S rDNA gene sequencing, metagenomics, and metabolomics data. Data Br., 41, 107960.
Abstract: Data in this article provides detailed information on the microbial dynamics and degradation performances in two fullscale anaerobic digesters operated in parallel for 476 days. One of them was kept at 35 degrees C for the whole experiment, while the other was submitted to sub-mesophilic (25 degrees C) conditions between days 123 and 373. Sludge samples were collected from both digesters at days 0, 80, 177, 218, 281, 353, and 462. The provided data include the operational conditions of the digesters and the characterization of the sludge samples at the physicochemical level, indicative of the digesters' degradation performance. It also includes the characterization of the sludge samples at the multiomics level (16S rRNA gene sequencing, metagenomics, and metabolomics profiling), to decipher the changes in the microbial structure and molecular activity. The 16S rDNA gene sequencing, metagenomics, and metabolomics data were generated using an IonTorrent PGM sequencer, an Illumina NextSeq 500 sequencer, and LTQ-Orbitrap XL mass spectrometer respectively. The 16S rDNA gene raw data and the metagenomics data have been deposited in the BioProject PRJEB49115, in the ENA database (https://www.ebi.ac.uk/ena/browser/view/PRJEB49115). The metabolomics data has been deposited at the Metabolomics Workbench, with study id ST002004 (DOI: 10.21228/M8JM6B). The data can be used as a source for comparisons with other studies working with data from full-scale anaerobic digesters, especially for those investigating the effect of the temperature modification. The data is associated with the research article “Metataxonomics, metagenomics, and metabolomics analysis of the influence of temperature modification in full-scale anaerobic digesters” (Puig-Castellvi et al [1]). (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
|
Torres, N., Greivel, G., Betz, J., Moreno, E., Newman, A., & Thomas, B. (2024). Optimizing steel coil production schedules under continuous casting and hot rolling. Eur. J. Oper. Res., 314(2), 496–508.
Abstract: In continuous steel casting operations, heats of molten steel are alloyed and refined in ladles, continuously cast and cut into slabs, and hot-rolled into coils. We present a mixed-integer program that produces a daily casting schedule and that is solved using state-of-the-art software for a 100% direct-charge steel mill; two casters concurrently produce slabs, which are rolled into coils at a single hot rolling mill. This model minimizes penalties incurred by violating plant best practices while strictly adhering to safety and logical constraints to manage risk associated with manufacturing incidents. An efficient formulation, combined with variable reduction and cutting planes, expedites solutions for small instances containing hundreds of variables and thousands of constraints by factors of at least two or three (and sometimes even 100); instances an order of magnitude larger along both problem dimensions suggest solutions that reduce costs incurred using plant best practices by as much as 40%.
|
Urrejola, S., Nespolo, R., & Lardies, M. A. (2011). Diet-induced developmental plasticity in life histories and energy metabolism in a beetle. Rev. Chil. Hist. Nat., 84(4), 523–533.
Abstract: Adaptive phenotypic plasticity, has been recognized as an important strategy by which organisms maximize fitness in variable environments, which vary through development. A disassociation among stages should represent a null effect of the environment experienced during early ontogeny in the expression of adult traits. Food quality greatly influences survival, development and reproduction in many arthropod herbivores. We examined the effects of diet protein in physiological and life-history traits in the yellow mealworm beetle Tenebrio molitor through ontogeny. We established four experimental treatments: Low Protein (LP), Low Protein Control (LPC), High Protein (HP), and High Protein Control (HPC) with recently eclosioned larvae each. Individuals were maintained on the same diet or transferred to the opposite diet for all pupae period and almost all adult period. Contrary to the expected, the duration of life-cycle, larval growth rate and body mass in T molitor were similar in diet treatments. We found intra-individual trade-offs between environmental diet (rich or poor in protein content) during larval phase and egg number. Larvae fed on a protein-deficient diet exhibited significantly higher respiratory rates than larvae fed on a rich protein diet. Compensatory feeding could act in T molitor larvae indicating differences in metabolism but not in growth rate, body mass and life-cycle characteristics. Our results demonstrate the plasticity of reproductive and metabolic traits and life-cycle characteristics of T molitor and how changes that occur in relation to diet can have profound effects on progeny and female fitness.
Keywords: CO2 production; complex life-cycle; food quality; metabolism; ontogeny
|
Vogt-Geisse, K., Ngonghala, C. N., & Feng, Z. L. (2020). The Impact Of Vaccination On Malaria Prevalence: A Vaccine-Age-Structured Modeling Approach. J. Biol. Syst., 28(2), 475–513.
Abstract: A deterministic model for the effects on disease prevalence of the most advanced preerythrocytic vaccine against malaria is proposed and studied. The model includes two vaccinated classes that correspond to initially vaccinated and booster dose vaccinated individuals. These two classes are structured by time-since-initial-vaccination (vaccine-age). This structure is a novelty for vector-host models; it allows us to explore the effects of parameters that describe timed and delayed delivery of a booster dose, and immunity waning on disease prevalence. Incorporating two vaccinated classes can predict more accurately threshold vaccination coverages for disease eradication under multi-dose vaccination programs. We derive a vaccine-age-structured control reproduction number R and establish conditions for the existence and stability of equilibria to the system. The model is bistable when R < 1. In particular, it exhibits a backward (sub-critical) bifurcation, indicating that R = 1 is no longer the threshold value for disease eradication. Thus, to achieve eradication we must identify and implement control measures that will reduce R to a value smaller than unity. Therefore, it is crucial to be cautious when using R to guide public health policy, although it remains a key quantity for decision making. Our results show that if the booster vaccine dose is administered with delay, individuals may not acquire its full protective effect, and that incorporating waning efficacy into the system improves the accuracy of the model outcomes. This study suggests that it is critical to follow vaccination schedules closely, and anticipate the consequences of delays in those schedules.
|