|
Bugedo, G., Tobar, E., Alegria, L., Oviedo, V., Arellano, D., Basoalto, R., et al. (2023). Development of mechanical ventilators in Chile. Chronicle of the initiative "Un Respiro para Chile. Rev. Med. Chile, 150(7), 958–965.
Abstract: At the beginning of the COVID-19 pandemic in Chile, in March 2020, a projection indicated that a significant group of patients with pneumonia would require admission to an Intensive Care Unit and connection to a mechanical ventilator. Therefore, a paucity of these devices and other supplies was predicted. The initiative “Un respiro para Chile” brought together many people and institutions, public and private. In the course of three months, it allowed the design and building of several ventilatory assistance devices, which could be used in critically ill patients.
|
|
|
Lagos, M., Caceres, C. W., & Lardies, M. A. (2014). Geographic variation in acid- base balance of the intertidal crustacean Cyclograpsus cinereus ( Decapoda, Grapsidae) during air exposure. J. Mar. Biol. Assoc. U.K., 94(1), 159–165.
Abstract: In intertidal poikilotherms with wide geographic distribution, physiological variations are ubiquitous, due to phenotypic plasticity and/or individual geographic variation. Using the grapsid crab, Cyclograpsus cinereus as a study model, acclimatization differences in respiratory physiology were evaluated among populations along the Chilean coast, covering a latitudinal gradient of about 2000km. This species inhabits the supratidal zones and, therefore, is subject to constant immersion and emersion periods, producing physiological acidification due to CO2 retention, mainly in the branchial cavity. Individuals of six populations were collected along the coastline of Chile and were exposed to air for different time periods in the laboratory. The following parameters were measured: pH, Ca2+, Cl- and haemolymphatic lactate dehydrogenase (LDH) enzyme activity. Populations from lower latitudes were significantly different from those from central and southern Chile, with a higher haemolymphatic pH variation and higher Ca2+ level, along with lower levels of Cl- and LDH enzyme activity. This indicates that the populations from lower latitudes, which are subject to higher air temperatures during emersion, have a higher homeostatic capacity during emersion periods than those of intermediate and higher latitudes. This response seems to be determined by genetic bases due to adaptation to the local environment.
|
|