|
Boschetti, M. A., & Novellani, S. (2023). Last-mile delivery with drone and lockers. Networks, Early Access.
Abstract: In this article, we define a new routing problem that arises in the last-mile delivery of parcels, in which customers can be served either directly at home by a capacitated truck, or possibly with a drone carried on the truck, or in a self-service mode using one of the available lockers. We investigate four different formulations, and for one of them, we propose a branch-and-cut approach. We also discuss some possible variants of the original problem. In the computational experiments, we analyze and compare the performance of the four formulations for the problem and its variants, and we provide some useful managerial insights.
|
|
|
Calderon, F. I., Lozada, A., Borquez-Paredes, D., Olivares, R., Davalos, E. J., Saavedra, G., et al. (2020). BER-Adaptive RMLSA Algorithm for Wide-Area Flexible Optical Networks. IEEE Access, 8, 128018–128031.
Abstract: Wide-area optical networks face significant transmission challenges due to the relentless growth of bandwidth demands experienced nowadays. Network operators must consider the relationship between modulation format and maximum reach for each connection request due to the accumulation of physical layer impairments in optical fiber links, to guarantee a minimum quality of service (QoS) and quality of transmission (QoT) to all connection requests. In this work, we present a BER-adaptive solution to solve the routing, modulation format, and spectrum assignment (RMLSA) problem for wide-area elastic optical networks. Our main goal is to maximize successful connection requests in wide-area networks while choosing modulation formats with the highest efficiency possible. Consequently, our technique uses an adaptive bit-error-rate (BER) threshold to achieve communication with the best QoT in the most efficient manner, using the strictest BER value and the modulation format with the smallest bandwidth possible. Additionally, the proposed algorithm relies on 3R regeneration devices to enable long-distances communications if transparent communication cannot be achieved. We assessed our method through simulations for various network conditions, such as the number of regenerators per node, traffic load per user, and BER threshold values. In a scenario without regenerators, the BER-Adaptive algorithm performs similarly to the most relaxed fixed BER threshold studied in blocking probability. However, it ensures a higher QoT to most of the connection requests. The proposed algorithm thrives with the use of regenerators, showing the best performance among the studied solutions, enabling long-distance communications with a high QoT and low blocking probability.
|
|
|
Colini-Baldeschi, R., Cominetti, R., & Scarsini, M. (2019). Price of Anarchy for Highly Congested Routing Games in Parallel Networks. Theor. Comput. Syst., 63(1), 90–113.
Abstract: We consider nonatomic routing games with one source and one destination connected by multiple parallel edges. We examine the asymptotic behavior of the price of anarchy as the inflow increases. In accordance with some empirical observations, we prove that under suitable conditions on the costs the price of anarchy is asymptotic to one. We show with some counterexamples that this is not always the case, and that these counterexamples already occur in simple networks with only 2 parallel links.
|
|
|
Cominetti, R., Dose, V., & Scarsini, M. (2022). The price of anarchy in routing games as a function of the demand. Math. Program., Early Access.
Abstract: The price of anarchy has become a standard measure of the efficiency of equilibria in games. Most of the literature in this area has focused on establishing worst-case bounds for specific classes of games, such as routing games or more general congestion games. Recently, the price of anarchy in routing games has been studied as a function of the traffic demand, providing asymptotic results in light and heavy traffic. The aim of this paper is to study the price of anarchy in nonatomic routing games in the intermediate region of the demand. To achieve this goal, we begin by establishing some smoothness properties of Wardrop equilibria and social optima for general smooth costs. In the case of affine costs we show that the equilibrium is piecewise linear, with break points at the demand levels at which the set of active paths changes. We prove that the number of such break points is finite, although it can be exponential in the size of the network. Exploiting a scaling law between the equilibrium and the social optimum, we derive a similar behavior for the optimal flows. We then prove that in any interval between break points the price of anarchy is smooth and it is either monotone (decreasing or increasing) over the full interval, or it decreases up to a certain minimum point in the interior of the interval and increases afterwards. We deduce that for affine costs the maximum of the price of anarchy can only occur at the break points. For general costs we provide counterexamples showing that the set of break points is not always finite.
|
|
|
Dumett, M. A., & Cominetti, R. (2018). On The Stability Of An Adaptive Learning Dynamics In Traffic Games. J. Dyn. Games, 5(4), 265–282.
Abstract: This paper investigates the dynamic stability of an adaptive learning procedure in a traffic game. Using the Routh-Hurwitz criterion we study the stability of the rest points of the corresponding mean field dynamics. In the special case with two routes and two players we provide a full description of the number and nature of these rest points as well as the global asymptotic behavior of the dynamics. Depending on the parameters of the model, we find that there are either one, two or three equilibria and we show that in all cases the mean field trajectories converge towards a rest point for almost all initial conditions.
|
|
|
Kosowski, A., Li, B., Nisse, N., & Suchan, K. (2015). k-Chordal Graphs: From Cops and Robber to Compact Routing via Treewidth. Algorithmica, 72(3), 758–777.
Abstract: Cops and robber games, introduced by Winkler and Nowakowski (in Discrete Math. 43(2-3), 235-239, 1983) and independently defined by Quilliot (in J. Comb. Theory, Ser. B 38(1), 89-92, 1985), concern a team of cops that must capture a robber moving in a graph. We consider the class of k-chordal graphs, i.e., graphs with no induced (chordless) cycle of length greater than k, ka parts per thousand yen3. We prove that k-1 cops are always sufficient to capture a robber in k-chordal graphs. This leads us to our main result, a new structural decomposition for a graph class including k-chordal graphs. We present a polynomial-time algorithm that, given a graph G and ka parts per thousand yen3, either returns an induced cycle larger than k in G, or computes a tree-decomposition of G, each bag of which contains a dominating path with at most k-1 vertices. This allows us to prove that any k-chordal graph with maximum degree Delta has treewidth at most (k-1)(Delta-1)+2, improving the O(Delta(Delta-1) (k-3)) bound of Bodlaender and Thilikos (Discrete Appl. Math. 79(1-3), 45-61, 1997. Moreover, any graph admitting such a tree-decomposition has small hyperbolicity). As an application, for any n-vertex graph admitting such a tree-decomposition, we propose a compact routing scheme using routing tables, addresses and headers of size O(klog Delta+logn) bits and achieving an additive stretch of O(klog Delta). As far as we know, this is the first routing scheme with O(klog Delta+logn)-routing tables and small additive stretch for k-chordal graphs.
|
|
|
Lagos, F., Klapp, M. A., & Toriello, A. (2023). Branch-and-price for routing with probabilistic customers. Comput. Ind. Eng., 183, 109429.
Abstract: We study the Vehicle Routing Problem with Probabilistic Customers (VRP-PC), a two-stage optimization model, which is a fundamental building block within the broad family of stochastic routing problems. This problem is mainly motivated by logistics distribution networks in which customers receive frequent delivery services, and by the last mile problem faced by companies such as UPS and FedEx. In a first stage before customer service requests realize, a dispatcher determines a set of vehicle routes serving all potential customer locations. In a second stage occurring after observing all customer requests, vehicles execute planned routes skipping all locations of customers not requiring service. The objective is to minimize the expected vehicle travel cost assuming known customer realization probabilities. We propose a column generation framework to solve the VRP-PC to a given optimality tolerance. Specifically, we present two novel algorithms, one that under -approximates a solution's expected cost, and another that uses its exact expected cost. Each algorithm is equipped with a route pricing mechanism that iteratively improves the approximation precision of a route's reduced cost; this produces fast route insertions at the start of the algorithm and reaches termination conditions at the end of the execution. Compared to branch-and-cut algorithms for arc-based formulations, our framework can more readily incorporate sequence-dependent constraints, which are typically required in routing problems. We provide a priori and a posteriori performance guarantees for these algorithms, and demonstrate their effectiveness via a computational study on instances with realization probabilities ranging from 0.5 to 0.9.
|
|
|
Leiva, A., Pavez, N., Beghelli, A., & Olivares, R. (2015). A Joint RSA Algorithm for Dynamic Flexible Optical Networking. IEEE Latin Am. Trans., 13(11), 3531–3537.
Abstract: We propose a novel algorithm to solve the Routing and Spectrum Allocation (RSA) problem in dynamic flexible grid optical networks. Unlike most previous proposals, the algorithm solves the R and SA problems jointly by exhaustively searching the solution space and taking the network state into account. As a result, the shortest possible path with enough spectrum availability is allocated to establish the connections. Simulation results show that, in terms of blocking ratio, our proposal significantly outperforms previously proposed algorithms. In some cases, the performance is better by more than one order of magnitude.
|
|
|
Lespay, H., & Suchan, K. (2021). A case study of consistent vehicle routing problem with time windows. Int. Trans. Oper. Res., 28, 1135–1163.
Abstract: We develop a heuristic for the consistent vehicle routing problem with time windows (ConVRPTW), which is motivated by a real-world application at a food company's distribution center. Besides standard VRPTW restrictions, ConVRPTW assigns each customer just one driver to fulfill his or her orders during the whole multiperiod planning horizon. For each driver and period, a route is sought to serve all their customers with positive demand. For each customer, the number of periods between consecutive orders and the ordered quantities is highly irregular. This causes difficulties in the daily routing, negatively impacting the service level of the company. Similar problems have been studied as ConVRP, where the number of drivers is fixeda priori, and only the total travel time is minimized. Moreover, the clients present no time window constraints, but the visits should be scheduled with a small arrival time variation. In our model, the objective is to minimize the number of drivers. We impose hard time windows but do not consider time consistency in more detail. We compare solutions given by the heuristic with solutions of a mixed-integer linear programming model on a set of small artificial instances and solutions used by the food company on real-world instances. The results show the effectiveness of the heuristic. For the company, we obtain significant improvements in the routing plans, with a lower number of vehicles and a higher rate of orders delivered within the prescribed time window.
|
|
|
Lespay, H., & Suchan, K. (2022). Territory Design for the Multi-Period Vehicle Routing Problem with Time Windows. Comput. Oper. Res., 145, 105866.
Abstract: This study introduces the Territory Design for the Multi-Period Vehicle Routing Problem with Time Windows (TD-MPVRPTW) problem, motivated by a real-world application at a food company's distribution center. This problem deals with the design of contiguous and compact territories for delivery of orders from a depot to a set of customers, with time windows, over a multi-period planning horizon. Customers and their demands vary over time. The problem is modeled as a mixed-integer linear program (MILP) and solved by a proposed heuristic. The heuristic solutions are compared with the proposed MILP solutions on a set of small artificial instances and the food company's solutions on a set of real-world instances. Computational results show that the proposed algorithm can yield high-quality solutions within moderate running times. A methodology is proposed in which the territories computed by the proposed heuristic on the past demand of one month are used for the operational routing during the following month, in which the demand is known only one day in advance. An evaluation shows that the territories obtained with our methodology would have led to levels of service significantly better than the ones that were experienced by the company, using a significantly lower number of vehicles to execute the deliveries.
|
|
|
Morales, P., Lozada, A., Borquez-Paredes, D., Olivares, R., Saavedra, G., Leiva, A., et al. (2021). Improving the Performance of SDM-EON Through Demand Prioritization: A Comprehensive Analysis. IEEE Access, 9, 63475–63490.
Abstract: This paper studies the impact of demand-prioritization on Space-Division Multiplexing Elastic Optical Networks (SDM-EON). For this purpose, we solve the static Routing, Modulation Level, Spatial Mode, and Spectrum Assignment (RMLSSA) problem using 34 different explainable demand-prioritization strategies. Although previous works have applied heuristics or meta-heuristics to perform demand-prioritization, they have not focused on identifying the best prioritization strategies, their inner operation, and the implications behind their good performance by thorough profiling and impact analysis. We focus on a comprehensive analysis identifying the best explainable strategies to sort network demands in SDM-EON, considering the physical-layer impairments found in optical communications. Also, we show that simply using the common shortest path routing might lead to higher resource requirements. Extensive simulation results show that up to 8.33% capacity savings can be achieved on average by balanced routing, up to a 16.69% capacity savings can be achieved using the best performing demand-prioritization strategy compared to the worst-performing ones, the most used demand-prioritization strategy in the literature (serving demands with higher bandwidth requirements first) is not the best-performing one but the one sorting based on the path lengths, and using double-criteria strategies to break ties is key for a good performance. These results are relevant showing that a good combination of routing and demand-prioritization heuristics impact significantly on network performance. Additionally, they increase the understanding about the inner workings of good heuristics, a valuable knowledge when network settings forbid using more computationally complex approaches.
|
|
|
Moreno, E., Beghelli, A., & Cugini, F. (2017). Traffic engineering in segment routing networks. Comput. Netw., 114, 23–31.
Abstract: Segment routing (SR) has been recently proposed as an alternative traffic engineering (TE) technology enabling relevant simplifications in control plane operations. In the literature, preliminary investigations on SR have focused on label encoding algorithms and experimental assessments, without carefully addressing some key aspects of SR in terms of the overall network TE performance. In this study, ILP models and heuristics are proposed and successfully utilized to assess the TE performance of SR-based packet networks. Results show that the default SR behavior of exploiting equal cost multiple paths (ECMP) may lead to several drawbacks, including higher network resource utilization with respect to cases where ECMP is avoided. Moreover, results show that, by properly performing segment list computations, it is possible to achieve very effective TE solutions by just using a very limited number of stacked labels, thus successfully exploiting the benefits of the SR technology. (C) 2017 Elsevier B.V. All rights reserved.
|
|
|
Munoz-Herrera, S., & Suchan, K. (2022). Constrained Fitness Landscape Analysis of Capacitated Vehicle Routing Problems. Entropy, 24(1), 53.
Abstract: Vehicle Routing Problems (VRP) comprise many variants obtained by adding to the original problem constraints representing diverse system characteristics. Different variants are widely studied in the literature; however, the impact that these constraints have on the structure of the search space associated with the problem is unknown, and so is their influence on the performance of search algorithms used to solve it. This article explores how assignation constraints (such as a limited vehicle capacity) impact VRP by disturbing the network structure defined by the solution space and the local operators in use. This research focuses on Fitness Landscape Analysis for the multiple Traveling Salesman Problem (m-TSP) and Capacitated VRP (CVRP). We propose a new Fitness Landscape Analysis measure that provides valuable information to characterize the fitness landscape's structure under specific scenarios and obtain several relationships between the fitness landscape's structure and the algorithmic performance.
|
|
|
Munoz-Herrera, S., & Suchan, K. (2022). Local Optima Network Analysis of Multi-Attribute Vehicle Routing Problems. Mathematics, 10(24), 4644.
Abstract: Multi-Attribute Vehicle Routing Problems (MAVRP) are variants of Vehicle Routing Problems (VRP) in which, besides the original constraint on vehicle capacity present in Capacitated Vehicle Routing Problem (CVRP), other attributes that model diverse real-life system characteristics are present. Among the most common attributes studied in the literature are vehicle capacity and route duration constraints. The influence of these restrictions on the overall structure of the problem and the performance of local search algorithms used to solve it has yet to be well known. This paper aims to explain the impact of constraints present in different variants of VRP through the alterations of the structure of the underlying search space that they cause. We focus on Local Optima Network Analysis (LONA) for multiple Traveling Salesman Problem (m-TSP) and VRP with vehicle capacity (CVRP), route duration (DVRP), and both (DCVRP) constraints. We present results that indicate that measures obtained for a sample of local optima provide valuable information on the behavior of the landscape under modifications in the problem's constraints. Additionally, we use the LONA measures to explain the difficulty of VRP instances for solving by local search algorithms.
|
|
|
Nisse, N., Rapaport, I., & Suchan, K. (2012). Distributed computing of efficient routing schemes in generalized chordal graphs. Theor. Comput. Sci., 444, 17–27.
Abstract: Efficient algorithms for computing routing tables should take advantage of particular properties arising in large scale networks. Two of them are of special interest: low (logarithmic) diameter and high clustering coefficient. High clustering coefficient implies the existence of few large induced cycles. Considering this fact, we propose here a routing scheme that computes short routes in the class of k-chordal graphs, i.e., graphs with no induced cycles of length more than k. In the class of k-chordal graphs, our routing scheme achieves an additive stretch of at most k – 1, i.e., for all pairs of nodes, the length of the route never exceeds their distance plus k – 1. In order to compute the routing tables of any n-node graph with diameter D we propose a distributed algorithm which uses O(log n)-bit messages and takes O(D) time. The corresponding routing scheme achieves the stretch of k – 1 on k-chordal graphs. We then propose a routing scheme that achieves a better additive stretch of 1 in chordal graphs (notice that chordal graphs are 3-chordal graphs). In this case, distributed computation of routing tables takes O(min{Delta D, n}) time, where Delta is the maximum degree of the graph. Our routing schemes use addresses of size log n bits and local memory of size 2(d-1) log n bits per node of degree d. (c) 2012 Elsevier B.V. All rights reserved.
|
|