Chang, Q., Zhou, C. C., Valdebenito, M. A., Liu, H. W., & Yue, Z. F. (2022). A novel sensitivity index for analyzing the response of numerical models with interval inputs. Comput. Methods in Appl. Mech. Eng., 400, 115509.
Abstract: This study proposes a novel sensitivity index to provide essential insights into numerical models whose inputs are characterized by intervals. Based on the interval model and its normalized form, the interval processes are introduced to define a new sensitivity index. The index can represent the individual or joint influence of the interval inputs on the output of a considered model. A doubleloop strategy, based on global metamodeling and optimization, is established to calculate the index. Subsequently, the proposed index is theoretically compared with two other existing indices, and it is experimentally applied to three numerical examples and a practical engineering problem of a honeycomb sandwich radome. The results indicate that the proposed index is an effective tool for interval sensitivity analysis.

Kapitanov, G., Alvey, C., VogtGeisse, K., & Feng, Z. L. (2015). An AgeStructured Model For The Coupled Dynamics Of Hiv And Hsv2. Math. Biosci. Eng., 12(4), 803–840.
Abstract: Evidence suggests a strong correlation between the prevalence of HSV2 (genital herpes) and the perseverance of the HIV epidemic. HSV2 is an incurable viral infection, characterized by periodic reactivation. We construct a model of the coinfection dynamics between the two diseases by incorporating a timesinceinfection variable to track the alternating periods of infectiousness of HSV2. The model considers only heterosexual relationships and distinguishes three population groups: males, general population females, and female sex workers. We calculate the basic reproduction numbers for each disease that provide threshold conditions, which determine whether a disease dies out or becomes endemic in the absence of the other disease. We also derive the invasion reproduction numbers that determine whether or not a disease can invade into a population in which the other disease is endemic. The calculations of the invasion reproduction numbers suggest a new aspect in their interpretation – the class from which the initial disease carrier arises is important for understanding the invasion dynamics and biological interpretation of the expressions of the reproduction numbers. Sensitivity analysis is conducted to examine the role of model parameters in influencing the model outcomes. The results are discussed in the last section.

Nasirov, S., Agostini, C. A., & Silva, C. (2017). An assessment of the implementation of renewable energy sources in the light of concerns over Chilean policy objectives. Energy Sources Part B, 12(8), 715–721.
Abstract: In recent years, the development of renewable energies in the electricity market in Chile has gained significant attention as a key alternative for energy sources diversification and meeting three key policy objectives: energy availability, environmental protection, and socialeconomic development. This study aims to assess various renewable energy sources in order to select suitable sources to accomplish the different policy goals in a country like Chile. For this purpose, a MultiCriteria Decision Analysis (MCDA) method is employed to evaluate the relative importance of policy objectives. In addition, a sensitivity analysis is conducted to build various different policy scenarios measuring the impact of variations on the current weights of the decision criteria. The results show that solar, wind, and small hydro are the preferred sources in the Chilean renewable energy portfolio, maximizing the objective of meeting the three policy goals at the same time.

Simon, F., Ordonez, J., Girard, A., & Parrado, C. (2019). Modelling energy use in residential buildings: How design decisions influence final energy performance in various Chilean climates. Indoor Built Environ., 28(4), 533–551.
Abstract: To reduce the energy consumption in buildings, there is a demand for tools that identify significant parameters of energy performance. The work presents the development and validation of a simulation model, called MEEDI, and graphical figures for the parametric sensitivity investigation of energy performance in different climates in Chile. The MEEDI is based on the ISO 13790 monthly calculation method of building energy use with two improved procedures for the calculation of the heat transfer through the floor and the solar heat gains. The graphical figures illustrate the effects of climate conditions, envelope components and window size and orientation on the energy consumption. The MEEDI program can contribute to find the best solution to increase energy efficiency in residential buildings. It can be adapted for various parameters, making it useful for future projects. The economic viability of specific measures for building envelope materials was analysed. Payback periods range from 5 to 27 years depending on the location and energy scenario. The study illustrates how building design decisions can have a significant impact on final energy performance. With simple envelope components modification, valuable energy gains and carbon emission reductions can be achieved in a costeffective manner in Chile.

Valdebenito, M. A., Misraji, M. A., Jensen, H. A., & Mayorga, C. F. (2021). Sensitivity estimation of first excursion probabilities of linear structures subject to stochastic Gaussian loading. Comput. Struct., 248, 106482.
Abstract: This contribution focuses on evaluating the sensitivity associated with first excursion probabilities of linear structural systems subject to stochastic Gaussian loading. The sensitivity measure considered is the partial derivative of the probability with respect to parameters that affect the structural response, such as dimensions of structural elements. The actual calculation of the sensitivity demands solving high dimensional integrals over hypersurfaces, which can be challenging from a numerical viewpoint. Hence, sensitivity evaluation is cast within the context of a reliability analysis that is conducted with Directional Importance Sampling. In this way, the sought sensitivity is obtained as a byproduct of the calculation of the failure probability, where the postprocessing step demands performing a sensitivity analysis of the unit impulse response functions of the structure. Thus, the sensitivity is calculated using sampling by means of an estimator, whose precision can be quantified in terms of its standard deviation. Numerical examples involving both small and largescale structural models illustrate the procedure for probability sensitivity estimation. (C) 2021 Elsevier Ltd. All rights reserved.

VogtGeisse, K., Lorenzo, C., & Feng, Z. L. (2013). Impact Of AgeDependent Relapse And Immunity On Malaria Dynamics. J. Biol. Syst., 21(4), 49 pp.
Abstract: An agestructured mathematical model for malaria is presented. The model explicitly includes the human and mosquito populations, structured by chronological age of humans. The infected human population is divided into symptomatic infectious, asymptomatic infectious and asymptomatic chronic infected individuals. The original partial differential equation (PDE) model is reduced to an ordinary differential equation (ODE) model with multiple age groups coupled by aging. The basic reproduction number R0 is derived for the PDE model and the age group model in the case of general n age groups. We assume that infectiousness of chronic infected individuals gets triggered by bites of even susceptible mosquitoes. Our analysis points out that this assumption contributes greatly to the R0 expression and therefore needs to be further studied and understood. Numerical simulations for n = 2 age groups and a sensitivity/uncertainty analysis are presented. Results suggest that it is important not only to consider asymptomatic infectious individuals as a hidden cause for malaria transmission, but also asymptomatic chronic infections (>60%), which often get neglected due to undetectable parasite loads. These individuals represent an important reservoir for future human infectiousness. By considering agedependent immunity types, the model helps generate insight into effective control measures, by targeting age groups in an optimal way.
