|
Carleo, I., Malavolta, L., Desidera, S., Nardiello, D., Wang, S., Turrini, D., et al. (2024). The GAPS programme at TNG. Astron. Astrophys., 682, A135.
Abstract: Context. Different theories have been developed to explain the origins and properties of close-in giant planets, but none of them alone can explain all of the properties of the warm Jupiters (WJs, Porb = 10-200 days). One of the most intriguing characteristics of WJs is that they have a wide range of orbital eccentricities, challenging our understanding of their formation and evolution. Aims. The investigation of these systems is crucial in order to put constraints on formation and evolution theories. TESS is providing a significant sample of transiting WJs around stars bright enough to allow spectroscopic follow-up studies. Methods. We carried out a radial velocity (RV) follow-up study of the TESS candidate TOI-4515 b with the high-resolution spectrograph HARPS-N in the context of the GAPS project, the aim of which is to characterize young giant planets, and the TRES and FEROS spectrographs. We then performed a joint analysis of the HARPS-N, TRES, FEROS, and TESS data in order to fully characterize this planetary system. Results. We find that TOI-4515 b orbits a 1.2 Gyr-old G-star, has an orbital period of Pb = 15.266446 +/- 0.000013 days, a mass of Mb = 2.01 +/- 0.05 MJ, and a radius of Rb = 1.09 +/- 0.04 RJ. We also find an eccentricity of e = 0.46 +/- 0.01, placing this planet among the WJs with highly eccentric orbits. As no additional companion has been detected, this high eccentricity might be the consequence of past violent scattering events.
|
|
|
Helminiak, K. G., Moharana, A., Pawar, T., Ukita, N., Sybilski, P., Espinoza, N., et al. (2021). Orbital and physical parameters of eclipsing binaries from the ASAS catalogue – XII. A sample of systems with K2 photometry. Mon. Not. Roy. Astron. Soc., 508(4), 5687–5708.
Abstract: We present results of the analysis of light and radial velocity (RV) curves of eight detached eclipsing binaries observed by the All-Sky Automated Survey, which we have followed up with high-resolution spectroscopy, and were later observed by the Keplersatellite as part of the K2 mission. The RV measurements came from spectra obtained with OAO-188/HIDES, MPG-2.2m/FEROS, SMARTS 1.5m/CHIRON, Euler/CORALIE, ESO-3.6m/HARPS, and OHP-1.93/ELODIE instruments. The K2 time-series photometry was analysed with the JKTEBOP code, with out-of-eclipse modulations of different origin taken into account. Individual component spectra were retrieved with the fd3 code, and analysed with the code ISPEC in order to determine effective temperatures and metallicities. Absolute values of masses, radii, and other stellar parameters are calculated, as well as ages, found through isochrone fitting. For five systems, such analysis has been done for the first time. The presented sample consists of a variety of stars, from low-mass dwarfs, through G- and F-type main sequence objects, to evolved active sub-giants, one of which is found to be crossing the Hertzsprung gap. One target may contain a gamma Dor-type pulsator, two more are parts of higher-order multiples, and spectra of their tertiaries were also retrieved and used to constrain the properties of these systems.
|
|
|
Mancini, L., Sarkis, P., Henning, T., Bakos, G. A., Bayliss, D., Bento, J., et al. (2020). The highly inflated giant planet WASP-174b. Astron. Astrophys., 633, 12 pp.
Abstract: Context. The transiting exoplanetary system WASP-174 was reported to be composed by a main-sequence F star (V = 11.8 mag) and a giant planet, WASP-174b (orbital period P-orb = 4.23 days). However only an upper limit was placed on the planet mass (<1.3 M-Jup), and a highly uncertain planetary radius (0.7-1.7 R-Jup) was determined.Aims. We aim to better characterise both the star and the planet and precisely measure their orbital and physical parameters.Methods. In order to constrain the mass of the planet, we obtained new measurements of the radial velocity of the star and joined them with those from the discovery paper. Photometric data from the HATSouth survey and new multi-band, high-quality (precision reached up to 0.37 mmag) photometric follow-up observations of transit events were acquired and analysed for getting accurate photometric parameters. We fit the model to all the observations, including data from the TESS space telescope, in two different modes: incorporating the stellar isochrones into the fit, and using an empirical method to get the stellar parameters. The two modes resulted to be consistent with each other to within 2<sigma>.Results. We confirm the grazing nature of the WASP-174b transits with a confidence level greater than 5 sigma, which is also corroborated by simultaneously observing the transit through four optical bands and noting how the transit depth changes due to the limb-darkening effect. We estimate that approximate to 76% of the disk of the planet actually eclipses the parent star at mid-transit of its transit events. We find that WASP-174b is a highly-inflated hot giant planet with a mass of M-p = 0.330 +/- 0.091 M-Jup and a radius of R-p = 1.435 +/- 0.050 R-Jup, and is therefore a good target for transmission-spectroscopy observations. With a density of rho (p) = 0.135 +/- 0.042 g cm(-3), it is amongst the lowest-density planets ever discovered with precisely measured mass and radius.
|
|