|
Astudillo-Defru, N., Cloutier, R., Wang, S. X., Teske, J., Brahm, R., Hellier, C., et al. (2020). A hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS. Astron. Astrophys., 636, 13 pp.
Abstract: We report the detection of a transiting super-Earth-sized planet (R = 1.39 +/- 0.09 R-circle plus) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf (V = 11, K = 7.1) located at 25.15 +/- 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan/PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 +/- 0.56 M-circle plus and thus the bulk density to be 1.74(-0.33)(+0.44) times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission's scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization.
|
|
|
Helminiak, K. G., Moharana, A., Pawar, T., Ukita, N., Sybilski, P., Espinoza, N., et al. (2021). Orbital and physical parameters of eclipsing binaries from the ASAS catalogue – XII. A sample of systems with K2 photometry. Mon. Not. Roy. Astron. Soc., 508(4), 5687–5708.
Abstract: We present results of the analysis of light and radial velocity (RV) curves of eight detached eclipsing binaries observed by the All-Sky Automated Survey, which we have followed up with high-resolution spectroscopy, and were later observed by the Keplersatellite as part of the K2 mission. The RV measurements came from spectra obtained with OAO-188/HIDES, MPG-2.2m/FEROS, SMARTS 1.5m/CHIRON, Euler/CORALIE, ESO-3.6m/HARPS, and OHP-1.93/ELODIE instruments. The K2 time-series photometry was analysed with the JKTEBOP code, with out-of-eclipse modulations of different origin taken into account. Individual component spectra were retrieved with the fd3 code, and analysed with the code ISPEC in order to determine effective temperatures and metallicities. Absolute values of masses, radii, and other stellar parameters are calculated, as well as ages, found through isochrone fitting. For five systems, such analysis has been done for the first time. The presented sample consists of a variety of stars, from low-mass dwarfs, through G- and F-type main sequence objects, to evolved active sub-giants, one of which is found to be crossing the Hertzsprung gap. One target may contain a gamma Dor-type pulsator, two more are parts of higher-order multiples, and spectra of their tertiaries were also retrieved and used to constrain the properties of these systems.
|
|