|
Abisha, M., Priya, R. K., Arunachalam, K. P., Avudaiappan, S., Flores, E. I. S., & Parra, P. F. (2023). Biodegradable Green Composites: Effects of Potassium Permanganate (KMnO4) Treatment on Thermal, Mechanical, and Morphological Behavior of Butea Parviflora (BP) Fibers. Polymers, 15(9), 2197.
Abstract: This study emphasizes the importance of utilizing biodegradable material Butea parviflora (BP) fiber for sustainable solutions. BP fiber offers numerous ecological benefits, such as being lightweight, biodegradable, and affordable to recycle. The study examines the effects of potassium permanganate (KMnO4) treatment on BP fiber and analyzes its physical and chemical behavior using various methods, including X-ray Diffraction (XRD) analysis, tensile testing, thermogravimetric analysis, thermal conductivity, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopic (FTIR) analysis. The results demonstrate that BP fiber possesses low density (1.40 g/cc) and high cellulose content (59.4%), which fosters compatibility between the matrix and resin. XRD analysis indicates a high crystallinity index (83.47%) and crystallite size (6.4 nm), showcasing exceptional crystalline behavior. Treated fibers exhibit improved tensile strength (198 MPa) and Young's modulus (4.40 GPa) compared to untreated fibers (tensile strength-92 MPa, tensile modulus-2.16 GPa). The Tg-DTA thermograms reveal the fiber's thermal resistance up to 240 degrees C with a kinetic activation energy between 62.80-63.46 KJ/mol. Additionally, the lowered thermal conductivity (K) from Lee's disc experiment suggests that BP fiber could be used in insulation applications. SEM photographic results display effective surface roughness for composite making, and FTIR studies reveal vibrational variations of cellulosic functional groups, which correlates with increased cellulosic behavior. Overall, the study affirms the potential of BP fiber as a reinforcing material for composite-making while emphasizing the importance of utilizing biodegradable materials for sustainability.
|
|
|
Agostini, C. A., Nasirov, S., & Silva, C. (2016). Solar PV Planning Toward Sustainable Development in Chile: Challenges and Recommendations. J. Environ. Dev., 25(1), 25–46.
Abstract: Over the past decade, the promotion of renewable energy projects in Chile, especially solar energy projects, has become increasingly important, as energy dependence from foreign fossil fuels has increased and concerns regarding climate change continue to grow, posing a significant challenge to the local economy. Even though recent developments toward a more sustainable energy matrix in Chile have significantly increased the investment in the solar energy sector, social and environmental fragilities, combined with the lack of well-functioning institutions and the historical marginalization of indigenous communities who have been affected by several energy projects, result in gradually increasing conflictive situations. Unless proper mechanisms are designed and implemented to rapidly and correctly address these challenges, Chile could miss the opportunities that solar energy projects can provide to the development of its communities and to the economic growth of its regions. This article studies solar photovoltaics planning in Chile, focusing on the recent developments and the main challenges ahead, and proposes policy recommendations for effectively addressing these challenges.
|
|
|
Agostini, C. A., Silva, C., & Nasirov, S. (2017). Failure of Energy Mega-Projects in Chile: A Critical Review from Sustainability Perspectives. Sustainability, 9(6), 17 pp.
Abstract: A number of successive energy crises over the last decade due to the lack of a balanced investment planning in the energy sector in Chile has led to a strong dependence on external sources and also doubled energy prices in the country, thus posing a significant challenge to the local economy. With the purpose of reaching long-term goals while simultaneously addressing short-term urgencies, Chile seeks to build a consistent and integrated energy policy in order to attract investment in the sector. Despite an overall attractive investment climate and encouraging market conditions in the country, the energy sector has been adversely affected, in particular, by the communities' opposition to mega-projects based on their expected environmental and social impacts. The study highlights recent experiences of energy generation mega-projects in terms of addressing aspects of sustainability. Based on these experiences, it discusses underdeveloped role of environmental evaluations and the main regulatory challenges ahead, recommending then public policies to effectively address these challenges.
|
|
|
Joseph, H. S., Pachiappan, T., Avudaiappan, S., Maureira-Carsalade, N., Roco-Videla, A., Guindos, P., et al. (2023). A Comprehensive Review on Recycling of Construction Demolition Waste in Concrete. Sustainability, 15(6), 4932.
Abstract: There have been efforts to use building demolition waste as an alternative aggregate in concrete to decrease the use of natural resources for construction. The World Green Building Council estimates that the construction industry is responsible for more than 50% of all material extracted globally and that construction and demolition waste makes up 35% of global landfills. As a result, incorporating recycled aggregate (RA) in concrete production is a prudent course of action to reduce the environmental impact. This study reviews prior research on using recycled aggregate instead of conventional ingredients in concrete. The composition and morphology of different types of RA, the behavior of RA in fresh and hardened states, keyword co-occurrence and evolution analysis, and the various additives used to enhance the inferior properties of RA are discussed. The RA showed different physical properties when compared with natural aggregate. However, the addition of pozzolanic materials and various pretreatment techniques is desirable for improving the inferior properties of RA. While building waste has been utilized as a substitute for fine and coarse aggregate, prior research has demonstrated that a modified mixing approach, an adequate mixing proportion, and the optimum replacement of cementitious materials are necessary. Based on the review, the recommendation is to use RA at a replacement level of up to 30% and the addition of precoated and pozzolanic materials as a treatment to provide concrete with adequate workability, strength, and durability for structural applications.
|
|
|
Melo, I. C., Alves, P. N., Queiroz, G. A., Yushimito, W., & Pereira, J. (2023). Do We Consider Sustainability When We Measure Small and Medium Enterprises' (SMEs') Performance Passing through Digital Transformation? Sustainability, 15(6), 4917.
Abstract: Small-medium enterprises (SMEs) represent 90% of business globally. Digital Transformation (DT) affects SMEs differently from larger companies because although SMEs have more flexibility and agility for adapting to new circumstances, they also have more limited resources and specialization capabilities. Thus, it is fundamental to measure SMEs' performance considering different perspectives. Here, we describe and analyze the state-of-the-art of DT in SMEs, focusing on performance measurement. We center on whether the tools used by SMEs encompass the triple bottom line of sustainability (i.e., environmental, social, and economic aspects). To do so, in December 2021, we performed a comprehensive systematic literature review (SLR) on the Web of Science and Scopus. In addition, we also explored a novel approach for SLR: topic modeling with a machine learning technique (Latent Dirichlet Allocation). The differences and interchangeability of both methods are discussed. The findings show that sustainability is treated as a separate topic in the literature. The social and environmental aspects are the most neglected. This paper contributes to sustainable development goals (SDGs) 1, 5, 8, 9, 10, and 12. A conceptual framework and future research directions are proposed. Thus, this paper is also valuable for policymakers and SMEs switching their production paradigm toward sustainability and DT.
|
|
|
Melo, I. C., Queiroz, G. A., Junior, P. N. A., de Sousa, T. B., Yushimito, W. F., & Pereira, J. (2023). Sustainable digital transformation in small and medium enterprises (SMEs): A review on performance. Heliyon, 9(3), e13908.
Abstract: Small and medium enterprises (SMEs) are responsible for 90% of all business and 50% of employment globally, mostly female jobs. Therefore, measuring SMEs' performance under the digital transformation (DT) through methods that encompass sustainability represents an essential tool for reducing poverty and gender inequality (United Nations Sustainable Development Goals). We aimed to describe and analyze the state-of-art performance evaluations of digital transformation in SMEs, mainly focusing on performance measurement. Also, we aimed to determine whether the tools encompass the three pillars of sustainability (environmental, social, and economic). Through a systematic literature review (SLR), a search on Web of Science (WoS) and Scopus resulted in the acceptance of 74 peer-reviewed papers published until December 2021. Additionally, a bibliometrics investigation was executed. Although there was no time restriction, the oldest paper was published in 2016, indicating that DT is a new research topic with increasing interest. Italy, China, and Finland are the countries that have the most published on the theme. Based on the results, a conceptual framework is proposed. Also, two future research directions are presented and discussed, one for theoretical and another for practical research. Among the theoretical development, it is essential to work on a widely accepted SME definition. Among the practical research, nine directions are identified-e.g., applying big data, sectorial and regional prioritization, cross-temporal investigations etc. Researchers can follow the presented avenues and roads to guide their researchers toward the most relevant topics with the most urgent necessity of investigation.
|
|
|
Ocampo-Melgar, A., Barria, P., Chadwick, C., & Diaz-Vasconcellos, R. (2022). Rural transformation and differential vulnerability: Exploring adaptation strategies to water scarcity in the Aculeo Lake basin. Front. Environ. Sci., 10, 955023.
Abstract: The way of life of agricultural rural territories and their long-term capacity to adapt to changes will be challenged not only by the impacts of climate change; but by increased vulnerability stemming from previous inadequate climate adaptations and development policies. Studies that deepen understanding of the differential causes and implications of vulnerabilities will improve adaptation or transformation of institutions for climate change. The Aculeo basin of Central Chile suffered an extreme 10-years rainfall deficit that resulted in the disappearance of a 12 km(2) lake and the economic transformation of the territory. This paper presents a cross-scale exploration of the political, cultural and historical interconnections behind this dramatic story, while critically discussing whether today's land use configuration reflects the territory's adaptive capacity. The story is reconstructed using land-use change analysis along with literature review and Causal-Loop Analysis. Results show how previous policies and other human factors contributed to the agroecosystem transformation, creating different vulnerabilities in different economic sectors. Today, what is observed as disparate capacities to adapt to climatic drought is actually the result of historic exacerbations of the vulnerabilities that had significantly contributed to the water scarcity crisis.
|
|
|
Otsuki, A., & Jang, H. (2022). Prediction of Particle Size Distribution of Mill Products Using Artificial Neural Networks. Chemengineering, 6(6), 92.
Abstract: High energy consumption in size reduction operations is one of the most significant issues concerning the sustainability of raw material beneficiation. Thus, process optimization should be done to reduce energy consumption. This study aimed to investigate the applicability of artificial neural networks (ANNs) to predict the particle size distributions (PSDs) of mill products. PSD is one of the key sources of information after milling since it significantly affects the subsequent beneficiation processes. Thus, precise PSD prediction can contribute to process optimization and energy consumption reduction by avoiding over-grinding. In this study, coal particles (-2 mm) were ground with a rod mill under different conditions, and their PSDs were measured. The variables studied included volume% (vol.%) of feed (coal particle), vol.% rod load, and grinding time. Our supervised ANN models were developed to predict PSDs and trained by experimental data sets. The trained models were verified with the other experimental data sets. The results showed that the PSDs predicted by ANN fitted very well with the experimental data after the training. Root mean squared error (RMSE) was calculated for each milling condition, with results between 0.165 and 0.965. Also, the developed ANN models can predict the PSDs of ground products under different milling conditions (i.e., vol.% feed, vol.% rod load, and grinding time). The results confirmed the applicability of ANNs to predict PSD and, thus the potential contribution to reducing energy consumption by optimizing the grinding conditions.
|
|
|
Pabon-Pereira, C., Slingerland, M., Hogervorst, S., van Lier, J., & Rabbinge, R. (2019). A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability, 11(14), 23 pp.
Abstract: This paper shows how system design determines sustainability outcomes of cassava bioethanol production in Colombia. The recovery of the energy contained in by-products is recommended as compared to single product production. In particular, this study assesses the energy, greenhouse gases, water, and land use performance of alternative cassava cascades working at different scales, highlighting the implications of including anaerobic digestion technology in the chain. The centralized systems showed a poorer energy and greenhouse gases performance as compared to decentralized ones in part due to the artificial drying of cassava chips in the centralized facility. Under solar drying of cassava chips, systems with anaerobic digestion produced three to five times more energy than demanded and produced greenhouse gas savings of 0.3 kgCO(2eq) L EtOH-1. The water balance output depends upon the water reuse within the ethanol industry, which demands 21-23 L EtOH-1. In the anaerobic digestion scenarios, assuming liquid flows are treated separately, complete water recovery is feasible. Land use for cassava cultivation was calculated to be 0.27-0.35 ha tEtOH(-1). The energy and water content of the material to digest, the options for digestate reuse, and the recovery of the methane produced are major considerations substantially influencing the role of anaerobic digestion within cassava cascade configurations.
|
|
|
Simon, F., Girard, A., Krotki, M., & Ordonez, J. (2021). Modelling and simulation of the wood biomass supply from the sustainable management of natural forests. J. Clean. Prod., 282, 124487.
Abstract: Wood biomass is an important energy resource, which can contribute to reduce the dependence on fossil fuels. The research undertakes the microeconomic approach to estimate the technical availability and operational costs of woody biomass production with a higher level of precision than other models present in the literature, as it considers the entire supply chain of the sustainable management of natural forests. This study introduces a tool, which is applied to estimate supply curves and costs of wood biomass extraction from natural forests in the 7th Region of Chile. The simulation indicates that 531,015 tons/year of wood biomass is available in natural forests of the Region under study, with extraction costs ranging from 24.51 to 56.68 US$/ton, or an average total cost of 40.97 US$/ton. The parametric analysis revealed that the maximum admissible distance to the nearest transport route and the transportation costs are the two most influential variables in the estimation of wood biomass supply and cost. Reducing the admissible distance from 5 km to 1 km reduced the availability of biomass by 80%, while a variation of +/- 50% of transportation costs translated into +/- 18.3% variation of total extraction costs.
The proposed method can be used to identify the technical-economic potential of wood biomass from natural forests in any commune, province, region, or country; as it has the flexibility to allow tests with multiple scenarios and parameters depending on the specific characteristics of the area to be analysed. Essentially, the purpose of this tool is to serve the assessment processes of the identification of new wood biomass resources, allowing decision makers to increase the potential of sustainable and cost-effective woody biomass for heat and electricity generation, and at the same time reduce greenhouse gas emissions and the dependence on fossil fuels.
|
|
|
Verastegui, F., Lorca, A., Olivares, D., & Negrete-Pincetic, M. (2021). Optimization-Based Analysis of Decarbonization Pathways and Flexibility Requirements in Highly Renewable Power Systems. Energy, 234, 121242.
Abstract: Several countries are adopting plans to reduce the contaminant emissions from the energy sector through renewable energy integration and restrictions on fossil fuel generation. This process poses important computational and methodological challenges on expansion planning modeling due to the operational details needed for a proper analysis. In this context, this paper develops a planning model including an effective representation of the operational aspects of the system to understand the key role of flexible resources under strong decarbonization processes in highly renewable power systems. A case study is developed for the Chilean power system, which is currently undergoing an ambitious coal phase-out process, including the analysis of a scenario that leads to a completely renewable generation mix. The results show that highly renewable generation mixes are feasible, but rely on an effective balance of the key flexibility attributes of the system including ramping, storage, and transmission capacities. Further, such balance allows for faster decarbonization goals to remain in a similar cost range, through the deployment of flexible capacity in earlier stages of the planning horizon.
|
|