|
Agostini, C. A., Nasirov, S., & Silva, C. (2016). Solar PV Planning Toward Sustainable Development in Chile: Challenges and Recommendations. J. Environ. Dev., 25(1), 25–46.
Abstract: Over the past decade, the promotion of renewable energy projects in Chile, especially solar energy projects, has become increasingly important, as energy dependence from foreign fossil fuels has increased and concerns regarding climate change continue to grow, posing a significant challenge to the local economy. Even though recent developments toward a more sustainable energy matrix in Chile have significantly increased the investment in the solar energy sector, social and environmental fragilities, combined with the lack of well-functioning institutions and the historical marginalization of indigenous communities who have been affected by several energy projects, result in gradually increasing conflictive situations. Unless proper mechanisms are designed and implemented to rapidly and correctly address these challenges, Chile could miss the opportunities that solar energy projects can provide to the development of its communities and to the economic growth of its regions. This article studies solar photovoltaics planning in Chile, focusing on the recent developments and the main challenges ahead, and proposes policy recommendations for effectively addressing these challenges.
|
|
|
Agostini, C. A., Silva, C., & Nasirov, S. (2017). Failure of Energy Mega-Projects in Chile: A Critical Review from Sustainability Perspectives. Sustainability, 9(6), 17 pp.
Abstract: A number of successive energy crises over the last decade due to the lack of a balanced investment planning in the energy sector in Chile has led to a strong dependence on external sources and also doubled energy prices in the country, thus posing a significant challenge to the local economy. With the purpose of reaching long-term goals while simultaneously addressing short-term urgencies, Chile seeks to build a consistent and integrated energy policy in order to attract investment in the sector. Despite an overall attractive investment climate and encouraging market conditions in the country, the energy sector has been adversely affected, in particular, by the communities' opposition to mega-projects based on their expected environmental and social impacts. The study highlights recent experiences of energy generation mega-projects in terms of addressing aspects of sustainability. Based on these experiences, it discusses underdeveloped role of environmental evaluations and the main regulatory challenges ahead, recommending then public policies to effectively address these challenges.
|
|
|
Pabon-Pereira, C., Slingerland, M., Hogervorst, S., van Lier, J., & Rabbinge, R. (2019). A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability, 11(14), 23 pp.
Abstract: This paper shows how system design determines sustainability outcomes of cassava bioethanol production in Colombia. The recovery of the energy contained in by-products is recommended as compared to single product production. In particular, this study assesses the energy, greenhouse gases, water, and land use performance of alternative cassava cascades working at different scales, highlighting the implications of including anaerobic digestion technology in the chain. The centralized systems showed a poorer energy and greenhouse gases performance as compared to decentralized ones in part due to the artificial drying of cassava chips in the centralized facility. Under solar drying of cassava chips, systems with anaerobic digestion produced three to five times more energy than demanded and produced greenhouse gas savings of 0.3 kgCO(2eq) L EtOH-1. The water balance output depends upon the water reuse within the ethanol industry, which demands 21-23 L EtOH-1. In the anaerobic digestion scenarios, assuming liquid flows are treated separately, complete water recovery is feasible. Land use for cassava cultivation was calculated to be 0.27-0.35 ha tEtOH(-1). The energy and water content of the material to digest, the options for digestate reuse, and the recovery of the methane produced are major considerations substantially influencing the role of anaerobic digestion within cassava cascade configurations.
|
|
|
Simon, F., Girard, A., Krotki, M., & Ordonez, J. (2021). Modelling and simulation of the wood biomass supply from the sustainable management of natural forests. J. Clean. Prod., 282, 124487.
Abstract: Wood biomass is an important energy resource, which can contribute to reduce the dependence on fossil fuels. The research undertakes the microeconomic approach to estimate the technical availability and operational costs of woody biomass production with a higher level of precision than other models present in the literature, as it considers the entire supply chain of the sustainable management of natural forests. This study introduces a tool, which is applied to estimate supply curves and costs of wood biomass extraction from natural forests in the 7th Region of Chile. The simulation indicates that 531,015 tons/year of wood biomass is available in natural forests of the Region under study, with extraction costs ranging from 24.51 to 56.68 US$/ton, or an average total cost of 40.97 US$/ton. The parametric analysis revealed that the maximum admissible distance to the nearest transport route and the transportation costs are the two most influential variables in the estimation of wood biomass supply and cost. Reducing the admissible distance from 5 km to 1 km reduced the availability of biomass by 80%, while a variation of +/- 50% of transportation costs translated into +/- 18.3% variation of total extraction costs.
The proposed method can be used to identify the technical-economic potential of wood biomass from natural forests in any commune, province, region, or country; as it has the flexibility to allow tests with multiple scenarios and parameters depending on the specific characteristics of the area to be analysed. Essentially, the purpose of this tool is to serve the assessment processes of the identification of new wood biomass resources, allowing decision makers to increase the potential of sustainable and cost-effective woody biomass for heat and electricity generation, and at the same time reduce greenhouse gas emissions and the dependence on fossil fuels.
|
|