|
Baudin, K., Fusaro, A., Garnier, J., Berti, N., Krupa, K., Carusotto, I.:, Rica, S., et al. (2021). Energy and wave-action flows underlying Rayleigh-Jeans thermalization of optical waves propagating in a multimode fiber((a)). EPL, 134(1), 14001.
Abstract: The wave turbulence theory predicts that a conservative system of nonlinear waves can exhibit a process of condensation, which originates in the singularity of the Rayleigh-Jeans equilibrium distribution of classical waves. Considering light propagation in a multimode fiber, we show that light condensation is driven by an energy flow toward the higher-order modes, and a bi-directional redistribution of the wave-action (or power) to the fundamental mode and to higher-order modes. The analysis of the near-field intensity distribution provides experimental evidence of this mechanism. The kinetic equation also shows that the wave-action and energy flows can be inverted through a thermalization toward a negative temperature equilibrium state, in which the high-order modes are more populated than low-order modes. In addition, a Bogoliubov stability analysis reveals that the condensate state is stable.
|
|
|
Capotondi, A., McGregor, S., McPhaden, M. J., Cravatte, S., Holbrook, N. J., Imada, Y., et al. (2023). Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Environ., 4(11), 754–769.
Abstract: Naturally occurring tropical Pacific variations at timescales of 7-70 years – tropical Pacific decadal variability (TPDV) – describe basin-scale sea surface temperature (SST), sea-level pressure and heat content anomalies. Several mechanisms are proposed to explain TPDV, which can originate through oceanic processes, atmospheric processes or as an El Nino/Southern Oscillation (ENSO) residual. In this Review, we synthesize knowledge of these mechanisms, their characteristics and contribution to TPDV. Oceanic processes include off-equatorial Rossby waves, which mediate oceanic adjustment and contribute to variations in equatorial thermocline depth and SST; variations in the strength of the shallow upper-ocean overturning circulation, which exhibit a large anti-correlation with equatorial Pacific SST at interannual and decadal timescales; and the propagation of salinity-compensated temperature (spiciness) anomalies from the subtropics to the equatorial thermocline. Atmospheric processes include midlatitude internal variability leading to tropical and subtropical wind anomalies, which result in equatorial SST anomalies and feedbacks that enhance persistence; and atmospheric teleconnections from Atlantic and Indian Ocean SST variability, which induce winds conducive to decadal anomalies of the opposite sign in the Pacific. Although uncertain, the tropical adjustment through Rossby wave activity is likely a dominant mechanism. A deeper understanding of the origin and spectral characteristics of TPDV-related winds is a key priority.
|
|
|
Correa, N., Cuevas, J., Fuentes, A., Torero, J. L., & Reszka, P. (2024). Understanding the effect of char oxidation on wood temperature profiles for varying heating and oxygen conditions. Fire Saf. J., 142, 104049.
Abstract: The use of mass timber framing as a sustainable material, particularly in high-rise buildings, requires detailed structural fire performance calculations. Thermal models describing only the solid phase are cost-effective alternatives to provide information to structural behavior models. Their accuracy depends on an adequate description of drying, pyrolysis, charring and eventually flaming phenomena. While in recent years there have been considerable contributions to the development of such models, there are still open questions. This work proposes a thermal model which incorporates char oxidation, describing both the kinetic-and diffusion controlled regimes. The model was used to replicate two sets of experimental results which used standard fire calorimeters to study the ignition of thick wood specimens within a range of incident heat fluxes and oxygen concentrations, respectively. The model yields adequate temperature predictions in the early heating stages, but fails to replicate the behavior at later stages, when the effect of the surface combustion is noticeable. In terms of mass loss rates, a poorer performance is observed. To change from one oxidation regime to another, a Damkohler number is proposed, based on char oxidation reaction rates. It is found that for compartment fire conditions, char oxidation will mostly occur develop under diffusion-controlled conditions.
|
|
|
Cruz, J. J., Escudero, F., Alvarez, E., da Silva, L. F. F., Carvajal, G., Thomsen, M., et al. (2021). Three-wavelength broadband soot pyrometry technique for axisymmetric flames. Opt. Lett., 46(11), 2654–2657.
Abstract: Soot temperature measurements in laminar flames are often performed through two-color broadband emission pyrometry (BEMI) or modulated absorption/emission (BMAE) techniques, using models to relate the ratio between flame intensities at two different wavelengths with soot temperature. To benefit from wider spectral range and increase the accuracy of experimental estimation of soot temperature, this work proposes a new approach that uses three-color broadband images captured with a basic color camera. The methodology is first validated through simulations using numerically generated flames from the CoFlame code and then used to retrieve soot temperature in an experimental campaign. The experimental results show that using three-color and BEMI provides smoother reconstruction of soot temperature than two-color and BMAE when small disturbances exist in the measured signals due to a reduced experimental noise effect. A sensitivity analysis shows that the retrieved temperature from three-color BEMI is more resilient to variations on the ratio of measured signals than BMAE, which is confirmed by an error propagation analysis based on a Monte Carlo approach.
|
|
|
Diaz, C., Belmonte, M., Campos, J. L., Franchi, O., Faundez, M., Vidal, G., et al. (2020). Limits of the anammox process in granular systems to remove nitrogen at low temperature and nitrogen concentration. Process Saf. Environ. Protect., 138, 349–355.
Abstract: When partial nitritation-anammox (PN-AMX) processes are applied to treat the mainstream in wastewater treatment plants (WWTPs), it is difficult to fulfil the total nitrogen (TN) quality requirements established by the European Union (<10g TN/m(3)). The operation of the anammox process was evaluated here in a continuous stirred tank reactor operated at 15 degrees C and fed with concentrations of 50 g TN/m(3) (1.30 +/- 0.23 g NO2- -N/g NH4+-N). Two different aspects were identified as crucial, limiting nitrogen removal efficiency. On the one hand, the oxygen transferred from the air in contact with the mixed liquor surface favoured the nitrite oxidation to nitrate (up to 75 %) and this nitrate, in addition to the amount produced from the anammox reaction itself, worsened the effluent quality. On the other hand, the mass transfer of ammonium and nitrite to be converted inside the anammox granules involves relatively large values of apparent affinity constants (k(NH4+app) : 0.50 g NH4+-N/m(3) ; k(NO2-app) 0.17 g NO2--N/m(3)) that favour the presence of these nitrogen compounds in the produced effluent. The careful isolation of the reactor from air seeping and the fixation of right hydraulic and solids retention times are expected to help the maintenance of stability and effluent quality. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
|
|
|
Hobson, M. J., Brahm, R., Jordan, A.., Espinoza, N., Kossakowski, D., Henning, T., et al. (2021). A Transiting Warm Giant Planet around the Young Active Star TOI-201. Astron. J., 161(5), 235.
Abstract: We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in Transiting Exoplanet Survey Satellite photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using groundbased photometry from Next Generation Transit Survey and radial velocities from FEROS, HARPS, CORALIE, and MINERVA-Australis. TOI-201 b orbits a young (0.87(-0.49)(+0.46)) and bright (V = 9.07 mag) F-type star with a 52.9781 day period. The planet has a mass of 0.42(-0.03)(+0.05) M-J, a radius of 1.008(-0.015)(+0.012) R-J, and an orbital eccentricity of 0.28(-0.09)(+0.06); it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b are important for constraining formation and evolution theories for giant planets.
|
|
|
Lagos, N. A., Benitez, S., Grenier, C., Rodriguez-Navarro, A. B., Garcia-Herrera, C., Abarca-Ortega, A., et al. (2021). Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions. Sci. Rep., 11(1), 24201.
Abstract: The exposure to environmental variations in pH and temperature has proven impacts on benthic ectotherms calcifiers, as evidenced by tradeoffs between physiological processes. However, how these stressors affect structure and functionality of mollusk shells has received less attention. Episodic events of upwelling of deep cold and low pH waters are well documented in eastern boundary systems and may be stressful to mollusks, impairing both physiological and biomechanical performance. These events are projected to become more intense, and extensive in time with ongoing global warming. In this study, we evaluate the independent and interactive effects of temperature and pH on the biomineral and biomechanical properties of Argopecten purpuratus scallop shells. Total organic matter in the shell mineral increased under reduced pH (similar to 7.7) and control conditions (pH similar to 8.0). The periostracum layer coating the outer shell surface showed increased protein content under low pH conditions but decreasing sulfate and polysaccharides content. Reduced pH negatively impacts shell density and increases the disorder in the orientation of calcite crystals. At elevated temperatures (18 degrees C), shell microhardness increased. Other biomechanical properties were not affected by pH/temperature treatments. Thus, under a reduction of 0.3 pH units and low temperature, the response of A. purpuratus was a tradeoff among organic compounds (biopolymer plasticity), density, and crystal organization (mineral plasticity) to maintain shell biomechanical performance, while increased temperature ameliorated the impacts on shell hardness. Biopolymer plasticity was associated with ecophysiological performance, indicating that, under the influence of natural fluctuations in pH and temperature, energetic constraints might be critical in modulating the long-term sustainability of this compensatory mechanism.
|
|
|
Lardies, M. A., Caballero, P., Duarte, C., & Poupin, M. J. (2021). Geographical Variation in Phenotypic Plasticity of Intertidal Sister Limpet's Species Under Ocean Acidification Scenarios. Front. Mar. Sci., 8, 647087.
Abstract: Ocean Acidification (OA) can have pervasive effects in calcifying marine organisms, and a better understanding of how different populations respond at the physiological and evolutionary level could help to model the impacts of global change in marine ecosystems. Due to its natural geography and oceanographic processes, the Chilean coast provides a natural laboratory where benthic organisms are frequently exposed to diverse projected OA scenarios. The goal of this study was to assess whether a population of mollusks thriving in a more variable environment (Talcaruca) would present higher phenotypic plasticity in physiological and morphological traits in response to different pCO(2) when compared to a population of the same species from a more stable environment (Los Molles). To achieve this, two benthic limpets (Scurria zebrina and Scurria viridula) inhabiting these two contrasting localities were exposed to ocean acidification experimental conditions representing the current pCO(2) in the Chilean coast (500 mu atm) and the levels predicted for the year 2100 in upwelling zones (1500 (mu atm). Our results show that the responses to OA are species-specific, even in this related species. Interestingly, S. viridula showed better performance under OA than S. zebrina (i.e., similar sizes and carbonate content in individuals from both populations; lower effects of acidification on the growth rate combined with a reduction of metabolism at higher pCO2). Remarkably, these characteristics could explain this species' success in overstepping the biogeographical break in the area of Talcaruca, which S. zebrina cannot achieve. Besides, the results show that the habitat factor has a strong influence on some traits. For instance, individuals from Talcaruca presented a higher growth rate plasticity index and lower shell dissolution rates in acidified conditions than those from Los Molles. These results show that limpets from the variable environment tend to display higher plasticity, buffering the physiological effects of OA compared with limpets from the more stable environment. Taken together, these findings highlight the key role of geographic variation in phenotypic plasticity to determine the vulnerability of calcifying organisms to future scenarios of OA.
|
|
|
Mahajan, S. M., & Asenjo, F. A. (2015). Hot Fluids and Nonlinear Quantum Mechanics. Int. J. Theor. Phys., 54(5), 1435–1449.
Abstract: A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrodinger, Klein-Gordon, and Pauli-Schrodinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.
|
|
|
Morales, N., del Rio, A. V., Vazquez-Padin, J. R., Mendez, R., Mosquera-Corral, A., & Campos, J. L. (2015). Integration of the Anammox process to the rejection water and main stream lines of WWTPs. Chemosphere, 140, 99–105.
Abstract: Nowadays the application of Anammox based processes in the wastewater treatment plants has given a step forward. The new goal consists of removing the nitrogen present in the main stream of the WWTTPs to improve their energetic efficiencies. This new approach aims to remove not only the nitrogen but also to provide a better use of the energy contained in the organic matter. The organic matter will be removed either by an anaerobic psychrophilic membrane reactor or an aerobic stage operated at low solids retention time followed by an anaerobic digestion of the generated sludge. Then ammonia coming from these units will be removed in an Anammox based process in a single unit system. The second strategy provides the best results in terms of operational costs and would allow reductions of about 28%. Recent research works performed on Anammox based processes and operated at relatively low temperatures and/or low ammonia concentrations were carried out in single-stage systems using biofilms, granules or a mixture of flocculent nitrifying and granular Anammox biomasses. These systems allowed the appropriated retention of Anammox and ammonia oxidizing bacteria but also the proliferation of nitrite oxidizing bacteria which seems to be the main drawback to achieve the required effluent quality for disposal. Therefore, prior to the implementation of the Anammox based processes at full scale to the water line, a reliable strategy to avoid nitrite oxidation should be defined in order to maintain the process stability and to obtain the desired effluent quality. If not, the application of a post-denitrification step should be necessary. (C) 2015 Elsevier Ltd. All rights reserved.
|
|
|
Pedrouso, A., Correa-Galeote, D., Maza-Marquez, P., Juarez-Jimenez, B., Gonzalez-Lopez, J., Rodelas, B., et al. (2021). Understanding the microbial trends in a nitritation reactor fed with primary settled municipal wastewater. Sep. Purif. Technol., 256, 117828.
Abstract: Partial nitritation was pointed out as the key step to implement the autotrophic nitrogen removal processes at low temperature. This study investigated the initiation and maintenance of a nitritation process with simultaneous COD removal in a sequencing batch reactor (SBR) run at 15 degrees C and fed with primary settled urban wastewater characterized by 42 +/- 10 mg TOC/L and 45 +/- 4 mg NH4+-N/L. A nitrite accumulation ratio of nearly 100% was observed and the long-term (354 days) process stability was successfully maintained despite the municipal wastewater composition fluctuations. The absence of nitrite oxidizing bacteria (NOB) activity was attributed to the free nitrous acid (FNA) in-situ accumulated at high levels (0.02-0.20 mg HNO2-N/L). Despite nitrate production was not observed, the quantification of bacterial groups indicated that NOB were present in the SBR sludge throughout the entire operational period. Ammonium oxidizing bacteria (AOB) abundance and community structure were significantly influenced by the organic matter present in the feeding. Average organic matter removal efficiencies of 80% were obtained without observing any detrimental effect over the nitritation process performance, due to the functional redundancy within both the chemoheterotrophic and AOB communities.
|
|
|
Pedrouso, A., del Rio, A. V., Morales, N., Vazquez-Padin, J. R., Campos, J. L., & Mosquera-Corral, A. (2021). Mainstream anammox reactor performance treating municipal wastewater and batch study of temperature, pH and organic matter concentration cross-effects. Process Saf. Environ. Protect., 145, 195–202.
Abstract: The anammox process is an energy efficient promising alternative to biologically remove the nitrogen. Thus, a 5-L anammox granular reactor was inoculated with sludge coming from a sidestream partial nitritation and anammox reactor (>200 mg TN/L and 30 degrees C) and it was directly subjected to 15 +/- 1 degrees C treating mimicked municipal wastewater (50 mg TN/L). Results indicated that an acclimation period (commonly used) to progressive reach the mainstream conditions is not needed, shortening the start-up periods. The long-term anammox process stability was proved to treat synthetic wastewater with decreasing alkalinities and nitritified primary settled municipal wastewater. The low pH values (6.2 +/- 0.1) of the municipal wastewater fed did not affect the process stability. Residual organic matter concentrations augmented the nitrogen removal efficiency from 80 % (with the synthetic medium) to 92 % achieving effluent concentrations below 10 mg TN/L. Finally, the effect of pH (6-8), temperature (15-30 degrees C) and organic matter concentration (0-75 mg TOC/L) over the specific anammox activity (SA(Amx)) was evaluated at short-term. pH and temperature and their interactions exerted significant influence on the SAAmx value while the TOC concentrations itself did not significantly change the SA(AMX). (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
|
|
|
Pinto, J., Aylwin, R., Silva-Oelker, G., & Jerez-Hanckes, C. (2021). Diffraction efficiency optimization for multilayered parametric holographic gratings. Opt. Lett., 46(16), 3929–3932.
Abstract: Multilayered diffraction gratings are an essential component in many optical devices due to their ability to engineer light. We propose a first-order optimization strategy to maximize diffraction efficiencies of such structures by a fast approximation of the underlying boundary integral equations for polarized electromagnetic fields. A parametric representation of the structure interfaces via trigonometric functions enables the problem to be set as a parametric optimization one while efficiently representing complex structures. Derivatives of the efficiencies with respect to geometrical parameters are computed using shape calculus, allowing a straightforward implementation of gradient descent methods. Examples of the proposed strategy in chirped pulse amplification show its efficacy in designing multilayered gratings to maximize their diffraction efficiency.
|
|
|
Plaza, F., Araya, H., & Yanez, E. (2023). Environmental effect on the variability of anchovy (Engraulis ringens) in northern Chile: Autoregressive conditional heteroskedastic approach with exogenonus variable and missing values. Fish. Res., 260, 106607.
Abstract: This article studies the monthly variability of anchovy (Engraulis ringens) in northern Chile, related with the environmental effect of sea surface temperature on the landings of the fishery. In order to achieve that goal, a variant of the autoregressive conditional heteroskedastic (ARCH) model is proposed, in which an additional covariate is included (sea surface temperature) and missing values are considered. To estimate the parameters of the model we use a least square type estimation procedure. The proposed model considers monthly data from the anchovy fishery in northern Chile from 2010 to 2020 with the sea surface temperature as an environmental exogenous variable. The results show the good performance of the model and its capability to further represent the anchovy variability by means of its estimated conditional variance.
|
|
|
Puig-Castellvi, F., Midoux, C., Guenne, A., Conteau, D., Franchi, O., Bureau, C., et al. (2022). A longitudinal study of the effect of temperature modification in full-scale anaerobic digesters – dataset combining 16S rDNA gene sequencing, metagenomics, and metabolomics data. Data Br., 41, 107960.
Abstract: Data in this article provides detailed information on the microbial dynamics and degradation performances in two fullscale anaerobic digesters operated in parallel for 476 days. One of them was kept at 35 degrees C for the whole experiment, while the other was submitted to sub-mesophilic (25 degrees C) conditions between days 123 and 373. Sludge samples were collected from both digesters at days 0, 80, 177, 218, 281, 353, and 462. The provided data include the operational conditions of the digesters and the characterization of the sludge samples at the physicochemical level, indicative of the digesters' degradation performance. It also includes the characterization of the sludge samples at the multiomics level (16S rRNA gene sequencing, metagenomics, and metabolomics profiling), to decipher the changes in the microbial structure and molecular activity. The 16S rDNA gene sequencing, metagenomics, and metabolomics data were generated using an IonTorrent PGM sequencer, an Illumina NextSeq 500 sequencer, and LTQ-Orbitrap XL mass spectrometer respectively. The 16S rDNA gene raw data and the metagenomics data have been deposited in the BioProject PRJEB49115, in the ENA database (https://www.ebi.ac.uk/ena/browser/view/PRJEB49115). The metabolomics data has been deposited at the Metabolomics Workbench, with study id ST002004 (DOI: 10.21228/M8JM6B). The data can be used as a source for comparisons with other studies working with data from full-scale anaerobic digesters, especially for those investigating the effect of the temperature modification. The data is associated with the research article “Metataxonomics, metagenomics, and metabolomics analysis of the influence of temperature modification in full-scale anaerobic digesters” (Puig-Castellvi et al [1]). (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
|
|
|
Ramajo, L., Rodriguez-Navarro, A. B., Duarte, C. M., Lardies, M. A., & Lagos, N. A. (2015). Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Mar. Freshw. Res., 66(12), 1147–1157.
Abstract: Along the west coast of South America, from the tropical zone to the Patagonian waters, there is a significant latitudinal gradient in seawater temperature, salinity and carbonate chemistry. These physical-chemical changes in seawater induce morphological and physiological responses in calcifying organisms, which may alter their energy budget and calcification processes. In this study, we study the organism energy maintenance (i.e. metabolic rate) and mineralogical composition of the shell of the juvenile marine snails Concholepas concholepas (Gastropoda: Muricidae), collected from benthic populations located similar to 2000km apart, varies across geographic regions along the Chilean coast. We found that in juvenile snails, the calcite:aragonite ratio in the pallial shell margin (i.e. newly deposited shell) increase significantly from northern to southern populations and this increase in calcite precipitation in the shell of juveniles snails was associated with a decrease in oxygen consumption rates in these populations. Our result suggests that calcite secretion may be favoured when metabolic rates are lowered, as this carbonate mineral phase might be less energetically costly for the organism to precipitate. This result is discussed in relation to the natural process such as coastal upwelling and freshwater inputs that promote geographic variation in levels of pH and carbonate saturation state in seawater along the Chilean coast.
|
|
|
Sepulveda, E., Mangalaraja, R. V., Troncoso, L., Jimenez, J., Salvo, C., & Sanhueza, F. (2022). Effect of barium on LSGM electrolyte prepared by fast combustion method for solid oxide fuel cells (SOFC). MRS Adv., Early Access.
Abstract: In this work, La0.85Sr0.15-xBaxGa0.85Mg0.15O3-delta (LSBGM), with 0 <= x <= 0.075, were prepared as electrolytes for solid oxide fuel cells applications. The effect of barium and sintering temperature on the structure and electrical properties was studied. A fast combustion method was used, starting with nitrate salts and citric acid as fuel. The XRD spectra showed two main phases corresponding to LSGM orthorhombic (space group Imma) and LSGM-cubic (space group Pm-3 m). From literature, both structures are reported as high oxygen ion conductive species, but normally, they are not reported to appear together. Major secondary phases were LaSrGaO4, BaLaGaO4, and BaLaGaO7. SEM revealed a material with low porosity, indicating incomplete densification. The sample La0.85Sr0.75Ba0.075Ga0.85Mg0.15O3-delta showed a conductivity of 0.016 and 0.058 S cm(-1) at 600 degrees C and 800 degrees C, respectively. This means an improvement of 34% compared to the non-barium sample La0.85Sr0.15Ga0.85Mg0.15O3-delta at 600 degrees C. Thus, this composition could be used in SOFC.
|
|
|
Thomsen, M., Cruz, J. J., Escudero, F., Fuentes, A., Fernandez-Pello, C., Gollner, M., et al. (2023). Determining flame temperature by broadband two color pyrometry in a flame spreading over a thin solid in microgravity. Proc. Combust. Inst., 39(3), 3909–3918.
Abstract: Fire spread inside a spacecraft is a constant concern in space travel. Understanding how the fire grows and spreads, and how it can potentially be extinguished is critical for planning future missions. The conditions in-side a spacecraft can greatly vary from those encountered on earth, including microgravity, low velocity flows, reduced ambient pressure and high oxygen, and thus affecting the combustion processes. In microgravity, the contributions of thermal radiation from gaseous species and soot can play a critical role in the spread of a flame and the problem has not been fully understood yet. The overall objective of this work is to address this by studying the soot temperature of microgravity flames spreading over a thin solid in microgravity. The ex-periments presented here were performed as part of the NASA project Saffire IV, conducted in orbit on board the Cygnus resupply vehicle before it re-entered the Earth's atmosphere. The fuel considered is a thin fabric made of cotton and fiberglass (Sibal) exposed to a forced flow of 20 cm/s in a concurrent flow configuration. Reconstruction of the flame temperature fields is extracted from two color broadband emission pyrometry (B2CP) as the flame propagates over the solid fuel. A methodology, relevant assumptions and its applicability to other microgravity experiments are discussed here. The data obtained shows that the technique provides an acceptable average temperature around similar to 1300 K, which remains relatively constant during the spread with an error value smaller than 117 K. The data presented in this work provides a methodology that could be applied to other microgravity experiments to be performed by NASA. It is expected that the results will provide insight for what is to be expected in different conditions relevant for fire safety in future space facilities. (c) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
|
|
|
Thomsen, M. C., Fuentes, A., Demarco, R., Volkwein, C., Consalvi, J. L., & Reszka, P. (2017). Soot measurements in candle flames. Exp. Therm. Fluid Sci., 82, 116–123.
Abstract: Soot volume fractions and soot temperatures have been measured for the first time on candle flames. Measurements on laminar steady flames were carried out using candles with wick diameters of 2, 3 and 4 mm. Wick length was varied between 4 and 10 mm. The shape of the candle flame was obtained from CH* spontaneous emissions. Measured flame heights show an increase with wick dimensions, approaching an asymptotic value for increasing wick lengths. Soot volume fractions were obtained from laser extinction measurements with the Modulated Absorption/Emission (MAE) technique. A deconvolution technique and a regularization procedure were applied to the data. Radial profiles of soot volume fractions increase when varying the wick dimensions; this effect is produced by the greater amount of fuel released by the wick. Radially integrated soot volume fractions were also calculated, presenting a similar behavior to the soot volume fraction radial profiles. The peak integrated soot volume fraction was found at approximately half the flame height, independent of the wick dimensions and burning rates. Soot temperature was obtained from emission measurements at two different wavelengths considering the attenuation of the soot particles in the optical path length. A deconvolution and regularization procedure was carried out in order to obtain temperature profiles for different heights in the flame. The observed increase in soot production and soot temperature profiles was directly related to the higher burning rate experienced by the candle. The results show that peak integrated soot volume fractions are proportional to both the mass loss rates and the flame heights. (C) 2016 Elsevier Inc. All rights reserved.
|
|