|
Genco, F., & Genco, G. (2019). Nuclear desalination in Chile: a competitive solution. Desalin. Water Treat., 140, 24–34.
Abstract: Renewable energy sources are considered the main drive for developing at least 70% of the total energy in Chile by 2050. All major international greenhouse gases reduction agreements include growth of renewable energy sources and nuclear power as the only ways to significantly reduce emissions by the decade 2040-50. Chile's energy production matrix still relies heavily on fossil fuels, making very difficult to match the goal targeted by international agreements. For these reasons, the possibility of using nuclear power plants is considered. Small modular reactors (SMRs) in particular seems particularly suitable for a country like Chile for many reasons: SMRs are scalable and can provide energy in remote locations with no or limited grids (Atacama desert); SMRs can cope easily with future demands for expansion, thanks to their modularity; SMRs are cost effective and use all the latest developments in safety. This paper examines, using IAEA DEEP 5 economic software, the costs of nuclear desalinated water produced for the Chilean mining industry. Comparisons with respect to existing fossil fuels solutions show that the final cost is very competitive and allow for significant reduction of CO2 emissions.
|
|
|
Jarpa, M., Rozas, O., Salazar, C., Baeza, C., Campos, J. L., Mansilla, H. D., et al. (2016). Comparison of the chemical precipitation, UV/H2O2 and Fenton processes to optimize removal of chronic toxicity from kraft mill effluents. Desalin. Water Treat., 57(30), 13887–13896.
Abstract: Secondary Treatment Effluents (STE) from Kraft mill effluents are discharged into aquatic ecosystems with high color and chronic toxicity contents owing to the recalcitrance of compounds in the effluents. The goal of the study was to evaluate the chemical precipitation, UV/H2O2, and the Fenton processes (H2O2/Fe2+) for chemical oxygen demand (COD) and for removing chronic toxicity from STE. A circumscribed central composite model and a response surface methodology were used to evaluate the effects of variables such as Al-2(SO4)(3), Fe(II), and H2O2 concentration and pH range for each treatment. The optimal conditions were 984.2mg Al-2(SO4)(3)/L and pH 5.2 for chemical precipitation; 51.4mM H2O2 and pH 5.1 for UV/H2O2; and 5.5mM Fe(II): 25mM H2O2 concentration and pH 2.8 for H2O2/Fe2+. Under such optimal conditions, COD removal was 84.7, 80.0, and 93.6%, with reaction times of 57, 75, and 10min for the chemical precipitation, UV/H2O2, and H2O2/Fe2+ methods, respectively. This study recorded chronic toxicity in STE and sludge formed during chemical precipitation with maximum reductions in percentages of Allometric Growth Rate (AGR) of 11.5 for STE without dilution (100%, p<0.05). For chemical precipitation sludge, the maximum reduction of AGR was 3.4% for a dilution of 75%. We concluded that all the assessed treatments effectively removed chronic toxicity in the treated effluents.
|
|