|
Azar, M., Carrasco, R. A., & Mondschein, S. (2022). Dealing with Uncertain Surgery Times in Operating Room Scheduling. Eur. J. Oper. Res., 299(1), 377–394.
Abstract: The operating theater is one of the most expensive units in the hospital, representing up to 40% of the total expenses. Because of its importance, the operating room scheduling problem has been addressed from many different perspectives since the early 1960s. One of the main difficulties that
has reduced the applicability of the current results is the high variability in surgery duration, making schedule recommendations hard to implement.
In this work, we propose a time-indexed scheduling formulation to solve the operational problem. Our main contribution is that we propose the use of chance constraints related to the surgery duration's probability distribution for each surgeon to improve the scheduling performance. We show how to implement these chance constraints as linear ones in our time-indexed formulation, enhancing the performance of the resulting schedules significantly.
Through data analysis of real historical instances, we develop specific constraints that improve the schedule, reducing the need for overtime without affecting the utilization significantly. Furthermore, these constraints give the operating room manager the possibility of balancing overtime and utilization through a tunning parameter in our formulation. Finally, through simulations and the use of real instances, we report the performance for four different metrics, showing the importance of using historical data to get the right balance between the utilization and overtime.
|
|
|
Carrasco, R. A., Iyengar, G., & Stein, C. (2018). Resource cost aware scheduling. Eur. J. Oper. Res., 269(2), 621–632.
Abstract: We are interested in the scheduling problem where there are several different resources that determine the speed at which a job runs and we pay depending on the amount of each resource that we use. This work is an extension of the resource dependent job processing time problem and the energy aware scheduling problems. We develop a new constant factor approximation algorithm for resource cost aware scheduling problems: the objective is to minimize the sum of the total cost of resources and the total weighted completion time in the one machine non-preemptive setting, allowing for arbitrary precedence constraints and release dates. Our algorithm handles general job-dependent resource cost functions. We also analyze the practical performance of our algorithms, showing that it is significantly superior to the theoretical bounds and in fact it is very close to optimal. The analysis is done using simulations and real instances, which are left publicly available for future benchmarks. We also present additional heuristic improvements and we study their performance in other settings. (C) 2018 Elsevier B.V. All rights reserved.
|
|
|
Freire, A. S., Moreno, E., & Yushimito, W. F. (2016). A branch-and-bound algorithm for the maximum capture problem with random utilities. Eur. J. Oper. Res., 252(1), 204–212.
Abstract: The MAXIMUM CAPTURE PROBLEM WITH RANDOM UTILITIES seeks to locate new facilities in a competitive market such that the captured demand of users is maximized, assuming that each individual chooses among all available facilities according to the well-know a random utility model namely the multinomial logit. The problem is complex mostly due to its integer nonlinear objective function. Currently, the most efficient approaches deal with this complexity by either using a nonlinear programing solver or reformulating the problem into a Mixed-Integer Linear Programing (MILP) model. In this paper, we show how the best MILP reformulation available in the literature can be strengthened by using tighter coefficients in some inequalities. We also introduce a new branch-and-bound algorithm based on a greedy approach for solving a relaxation of the original problem. Extensive computational experiments are presented, bench marking the proposed approach with other linear and non-linear relaxations of the problem. The computational experiments show that our proposed algorithm is competitive with all other methods as there is no method which outperforms the others in all instances. We also show a large-scale real instance of the problem, which comes from an application in park-and-ride facility location, where our proposed branch-and-bound algorithm was the most effective method for solving this type of problem. (C) 2015 Elsevier B.V. All rights reserved.
|
|
|
Gonzalez, E., & Villena, M. (2011). Spatial Lanchester models. Eur. J. Oper. Res., 210(3), 706–715.
Abstract: Lanchester equations have been widely used to model combat for many years, nevertheless, one of their most important limitations has been their failure to model the spatial dimension of the problems. Despite the fact that some efforts have been made in order to overcome this drawback, mainly through the use of Reaction-Diffusion equations, there is not yet a consistently clear theoretical framework linking Lanchester equations with these physical systems, apart from similarity. In this paper, a spatial modeling of Lanchester equations is conceptualized on the basis of explicit movement dynamics and balance of forces, ensuring stability and theoretical consistency with the original model. This formulation allows a better understanding and interpretation of the problem, thus improving the current treatment, modeling and comprehension of warfare applications. Finally, as a numerical illustration, a new spatial model of responsive movement is developed, confirming that location influences the results of modeling attrition conflict between two opposite forces. (C) 2010 Elsevier B.V. All rights reserved.
|
|
|
Lagos, F., & Pereira, J. (2023). Multi-arme d bandit-base d hyper-heuristics for combinatorial optimization problems. Eur. J. Oper. Res., 312(1), 70–91.
Abstract: There are significant research opportunities in the integration of Machine Learning (ML) methods and Combinatorial Optimization Problems (COPs). In this work, we focus on metaheuristics to solve COPs that have an important learning component. These algorithms must explore a solution space and learn from the information they obtain in order to find high-quality solutions. Among the metaheuristics, we study Hyper-Heuristics (HHs), algorithms that, given a number of low-level heuristics, iteratively select and apply heuristics to a solution. The HH we consider has a Markov model to produce sequences of low-level heuristics, which we combine with a Multi-Armed Bandit Problem (MAB)-based method to learn its parameters. This work proposes several improvements to the HH metaheuristic that yields a better learning for solving problem instances. Specifically, this is the first work in HHs to present Exponential Weights for Exploration and Exploitation (EXP3) as a learning method, an algorithm that is able to deal with adversarial settings. We also present a case study for the Vehicle Routing Problem with Time Windows (VRPTW), for which we include a list of low-level heuristics that have been proposed in the literature. We show that our algorithms can handle a large and diverse list of heuristics, illustrating that they can be easily configured to solve COPs of different nature. The computational results indicate that our algorithms are competitive methods for the VRPTW (2.16% gap on average with respect to the best known solutions), demonstrating the potential of these algorithms to solve COPs. Finally, we show how algorithms can even detect low-level heuristics that do not contribute to finding better solutions to the problem.& COPY
|
|
|
Lagos, G., Espinoza, D., Moreno, E., & Vielma, J. P. (2015). Restricted risk measures and robust optimization. Eur. J. Oper. Res., 241(3), 771–782.
Abstract: In this paper we consider characterizations of the robust uncertainty sets associated with coherent and distortion risk measures. In this context we show that if we are willing to enforce the coherent or distortion axioms only on random variables that are affine or linear functions of the vector of random parameters, we may consider some new variants of the uncertainty sets determined by the classical characterizations. We also show that in the finite probability case these variants are simple transformations of the classical sets. Finally we present results of computational experiments that suggest that the risk measures associated with these new uncertainty sets can help mitigate estimation errors of the Conditional Value-at-Risk. (C) 2014 Elsevier B.V. All rights reserved.
|
|
|
Ljubic, I., & Moreno, E. (2018). Outer approximation and submodular cuts for maximum capture facility location problems with random utilities. Eur. J. Oper. Res., 266(1), 46–56.
Abstract: We consider a family of competitive facility location problems in which a “newcomer” company enters the market and has to decide where to locate a set of new facilities so as to maximize its market share. The multinomial logit model is used to estimate the captured customer demand. We propose a first branch-and-cut approach for this family of difficult mixed-integer non-linear problems. Our approach combines two types of cutting planes that exploit particular properties of the objective function: the first one are the outer-approximation cuts and the second one are the submodular cuts. The approach is computationally evaluated on three datasets from the recent literature. The obtained results show that our new branch-and-cut drastically outperforms state-of-the-art exact approaches, both in terms of the computing times, and in terms of the number of instances solved to optimality. (C) 2017 Elsevier B.V. All rights reserved.
|
|
|
Moreno, E., Rezakhah, M., Newman, A., & Ferreira, F. (2017). Linear models for stockpiling in open-pit mine production scheduling problems. Eur. J. Oper. Res., 260(1), 212–221.
Abstract: The open pit mine production scheduling (OPMPS) problem seeks to determine when, if ever, to extract each notional, three-dimensional block of ore and/or waste in a deposit and what to do with each, e.g., send it to a particular processing plant or to the waste dump. This scheduling model maximizes net present value subject to spatial precedence constraints, and resource capacities. Certain mines use stockpiles for blending different grades of extracted material, storing excess until processing capacity is available, or keeping low-grade ore for possible future processing. Common models assume that material in these stockpiles, or “buckets,” is theoretically immediately mixed and becomes homogeneous. We consider stockpiles as part of our open pit mine scheduling strategy, propose multiple models to solve the OPMPS problem, and compare the solution quality and tractability of these linear-integer and nonlinear-integer models. Numerical experiments show that our proposed models are tractable, and correspond to instances which can be solved in a few seconds up to a few minutes in contrast to previous nonlinear models that fail to solve. (C) 2016 Elsevier B.V. All rights reserved.
|
|
|
Munoz, F. D., Hobbs, B. F., & Watson, J. P. (2016). New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints. Eur. J. Oper. Res., 248(3), 888–898.
Abstract: We propose a novel two-phase bounding and decomposition approach to compute optimal and near-optimal solutions to large-scale mixed-integer investment planning problems that have to consider a large number of operating subproblems, each of which is a convex optimization. Our motivating application is the planning of power transmission and generation in which policy constraints are designed to incentivize high amounts of intermittent generation in electric power systems. The bounding phase exploits Jensen's inequality to define a lower bound, which we extend to stochastic programs that use expected-value constraints to enforce policy objectives. The decomposition phase, in which the bounds are tightened, improves upon the standard Benders' algorithm by accelerating the convergence of the bounds. The lower bound is tightened by using a Jensen's inequality-based approach to introduce an auxiliary lower bound into the Benders master problem. Upper bounds for both phases are computed using a sub-sampling approach executed on a parallel computer system. Numerical results show that only the bounding phase is necessary if loose optimality gaps are acceptable. However, the decomposition phase is required to attain optimality gaps. Use of both phases performs better, in terms of convergence speed, than attempting to solve the problem using just the bounding phase or regular Benders decomposition separately. (C) 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS). All rights reserved.
|
|
|
Pereira, J. (2016). Procedures for the bin packing problem with precedence constraints. Eur. J. Oper. Res., 250(3), 794–806.
Abstract: The bin packing problem with precedence constraints (BPP-P) is a recently proposed variation of the classical bin packing problem (BPP), which corresponds to a basic model featuring many underlying characteristics of several scheduling and assembly line balancing problems. The formulation builds upon the BPP by incorporating precedence constraints among items, which force successor items to be packed into later bins than their predecessors. In this paper we propose a dynamic programming based heuristic, and a modified exact enumeration procedure to solve the problem. These methods make use of several new lower bounds and dominance rules tailored for the problem in hand. The results of a computational experiment show the effectiveness of the proposed methods, which are able to close all of the previous open instances from the benchmark instance set within very reduced running times. (C) 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS). All rights reserved.
|
|
|
Pereira, J., & Ritt, M. (2023). Exact and heuristic methods for a workload allocation problem with chain precedence constraints. Eur. J. Oper. Res., 309(1), 387–398.
Abstract: Industrial manufacturing is often organized in assembly lines where a product is assembled on a se-quence of stations, each of which executes some of the assembly tasks. A line is balanced if the maximum total execution time of any station is minimal. Commonly, the task execution order is constrained by precedences, and task execution times are independent of the station performing the task. Here, we con -sider a recent variation, called the “(Calzedonia) Workload Allocation Problem” (WAP), where the prece-dences form a chain, and the execution time of a task depends on the worker executing it. This problem was recently proposed by Battarra et al. (2020) and it is a special case of the Assembly Line Worker As-signment and Balancing Problem Miralles et al. (2007) where precedence relations are arbitrary. In this paper we consider the computational complexity of the problem and prove its NP-hardness. To solve the problem, we provide different lower bounds and exact and heuristic procedures. The performance of the proposed methods is tested on previously proposed instances and on new, larger instances with the same characteristics. The results show that the proposed methods can solve instances with up to about 40 0 0 tasks and 29 workers, doubling the size of the instances that previously could be solved to optimality.
|
|
|
Pereira, J., & Vasquez, O. C. (2017). The single machine weighted mean squared deviation problem. Eur. J. Oper. Res., 261(2), 515–529.
Abstract: This paper studies a single machine problem related to the just-In-Time (JIT) production objective in which the goal is to minimize the sum of weighted mean squared deviation of the completion times with respect to a common due date. In order to solve the problem, several structural and dominance properties of the optimal solution are investigated. These properties are then integrated within a branch and-cut approach to solve a time-indexed formulation of the problem. The results of a computational experiment with the proposed algorithm show that the method is able to optimally solve instances with up to 300 jobs within reduced running times, improving other integer programming approaches. (C) 2017 Elsevier B.V. All rights reserved.
|
|
|
Reus, L., & Mulvey, J. M. (2016). Dynamic allocations for currency futures under switching regimes signals. Eur. J. Oper. Res., 253(1), 85–93.
Abstract: Over the last decades, speculative investors in the FX market have profited in the well known currency carry trade strategy (CT). However, during currencies or global financial crashes, CT produces substantial losses. In this work we present a methodology that enhances CT performance significantly. For our final strategy, constructed backtests show that the mean-semivolatility ratio can be more than doubled with respect to benchmark CT. To do the latter, we first identify and classify CT returns according to their behavior in different regimes, using a Hidden Markov Model (HMM). The model helps to determine when to open and close positions, depending whether the regime is favorable to CT or not. Finally we employ a mean-semivariance allocation model to improve allocations when positions are opened. (C) 2016 Elsevier B.V. All rights reserved.
|
|
|
Ritt, M., & Pereira, J. (2020). Heuristic and exact algorithms for minimum-weight non-spanning arborescences. Eur. J. Oper. Res., 287(1), 61–75.
Abstract: We address the problem of finding an arborescence of minimum total edge weight rooted at a given vertex in a directed, edge-weighted graph. If the arborescence must span all vertices the problem is solvable in polynomial time, but the non-spanning version is NP-hard. We propose reduction rules which determine vertices that are required or can be excluded from optimal solutions, a modification of Edmonds algorithm to construct arborescences that span a given set of selected vertices, and embed this procedure into an iterated local search for good vertex selections. Moreover, we propose a cutset-based integer linear programming formulation, provide different linear relaxations to reduce the number of variables in the model and solve the reduced model using a branch-and-cut approach. We give extensive computational results showing that both the heuristic and the exact methods are effective and obtain better solutions on instances from the literature than existing approaches, often in much less time. (C) 2020 Elsevier B.V. All rights reserved.
|
|
|
Tapia, T., Lorca, A., Olivares, D., Negrete-Pincetic, M., & Lamadrid, A. J. (2021). A robust decision-support method based on optimization and simulation for wildfire resilience in highly renewable power systems. Eur. J. Oper. Res., 294(2), 723–733.
Abstract: Wildfires can pose a major threat to the secure operation of power networks. Chile, California, and Australia have suffered from recent wildfires that have induced considerable power supply cuts. Further, as power systems move to a significant integration of variable renewable energy sources, successfully managing the impact of wildfires on the power supply can become even more challenging due to the joint uncertainty in wildfire trajectories and the power injections from wind and solar farms. Motivated by this, this paper develops a practical decision-support approach that concatenates a stochastic wildfire simulation method with an attacker-defender model that aims to find a worst-case realization for (i) transmission line and generator contingencies, out of those that can potentially be affected by a given wildfire scenario, and for (ii) wind and solar power trajectories, based on a max-min structure where the inner min problem represents a best adaptive response on generator dispatch actions. Further, this paper proposes an evaluation framework to assess the power supply security of various power system topology configurations, under the assumption of limited transmission switching capabilities, and based on the simulation of several wildfire evolution scenarios. Extensive computational experiments are carried out on two representations of the Chilean power network with up to 278 buses, showing the practical effectiveness of the proposed approach for enhancing wildfire resilience in highly renewable power systems.
|
|
|
Torres, N., Greivel, G., Betz, J., Moreno, E., Newman, A., & Thomas, B. (2024). Optimizing steel coil production schedules under continuous casting and hot rolling. Eur. J. Oper. Res., 314(2), 496–508.
Abstract: In continuous steel casting operations, heats of molten steel are alloyed and refined in ladles, continuously cast and cut into slabs, and hot-rolled into coils. We present a mixed-integer program that produces a daily casting schedule and that is solved using state-of-the-art software for a 100% direct-charge steel mill; two casters concurrently produce slabs, which are rolled into coils at a single hot rolling mill. This model minimizes penalties incurred by violating plant best practices while strictly adhering to safety and logical constraints to manage risk associated with manufacturing incidents. An efficient formulation, combined with variable reduction and cutting planes, expedites solutions for small instances containing hundreds of variables and thousands of constraints by factors of at least two or three (and sometimes even 100); instances an order of magnitude larger along both problem dimensions suggest solutions that reduce costs incurred using plant best practices by as much as 40%.
|
|
|
Villena, M. J., & Reus, L. (2016). On the strategic behavior of large investors: A mean-variance portfolio approach. Eur. J. Oper. Res., 254(2), 679–688.
Abstract: One key assumption of Markowitz's model is that all traders act as price takers. In this paper, we extend this mean-variance approach in a setting where large investors can move prices. Instead of having an individual optimization problem, we find the investors' Nash equilibrium and redefine the efficient frontier in this new framework. We also develop a simplified application of the general model, with two assets and two investors to shed light on the potential strategic behavior of large and atomic investors. Our findings validate the claim that large investors enhance their portfolio performance in relation to perfect market conditions. Besides, we show under which conditions atomic investors can benefit in relation to the standard setting, even if they have not total influence on their eventual performance. The 'two investors-two assets' setting allows us to quantify performance and do sensitivity analysis regarding investors' market power, risk tolerance and price elasticity of demand. Finally, for a group of well known ETFs, we empirically show how price variations change depending on the volume traded. We also explain how to set up and use our model with real market data. (C) 2016 Elsevier B.V. All rights reserved.
|
|