
Acena, A., Anabalon, A., Astefanesei, D., & Mann, R. (2014). Hairy planar black holes in higher dimensions. J. High Energy Phys., (1), 21 pp.
Abstract: We construct exact hairy planar black holes in Ddimensional AdS gravity. These solutions are regular except at the singularity and have stressenergy that satisfies the null energy condition. We present a detailed analysis of their thermodynamical properties and show that the first law is satisfied. We also discuss these solutions in the context of AdS/CFT duality and construct the associated cfunction.



Anabalon, A. (2012). Exact black holes and universality in the backreaction of nonlinear sigma models with a potential in (A)dS(4). J. High Energy Phys., (6), 18 pp.
Abstract: The aim of this paper is to construct accelerated, stationary and axisymmetric exact solutions of the Einstein theory with self interacting scalar fields in (A)dS4. To warm up, the backreaction of the (non)minimally coupled scalar field is solved, the scalar field equations are integrated and all the potentials compatible with the metric ansatz and Einstein gravity are found. With these results at hand the nonlinear sigma model is tackled. The scalar field Lagrangian is generic; neither the coupling to the curvature, neither the metric in the scalar manifold nor the potential, are fixed ab initio. The unique assumption in the analysis is the metric ansatz: it has the form of the most general Petrov type D vacuum solution of general relativity; it is a a cohomogeneity two Weyl rescaling of the Carter metric and therefore it has the typical PlebanskiDemianski form with two arbitrary functions of one variable and one arbitrary function of two variables. It is shown, by an straightforward manipulation of the field equations, that the metric is completely integrable without necessity of specifiying anything in the scalar Lagrangian. This results is that the backreaction of the scalar fields, within this class of metrics, is universal. The metric functions generically show an explicit dependence on a dynamical exponent that allows to smoothly connect this new family of solutions with the actual PlebanskiDemianski spacetime. The remaining field equations imply that the scalar fields follow geodesics in the scalar manifold with an affine parameter given by a nonlinear function of the spacetime coordinates and define the onshell form of the potential plus a functional equation that it has to satisfy. To further find the exact form of the potential the simplest case associated to a flat scalar manifold is taken. The most general potential compatible with the Einstein theory and the metric ansatz is constructed in this case and it is shown that it has less symmetry than the maximal compact subgroup of the coset construction. Finally, the most general family of (A) dS4 static hairy black holes is explicitly constructed and its properties are outlined.



Anabalon, A., Astefanesei, D., Choque, D., & Martinez, C. (2016). Trace anomaly and counterterms in designer gravity. J. High Energy Phys., (3), 29 pp.
Abstract: We construct concrete counterterms of the BalasubramanianKraus type for Einsteinscalar theories with designer gravity boundary conditions in AdS(4), so that the total action is fi nite onshell and satisfy a well de fi ned variational principle. We focus on scalar fi elds with the conformal mass m(2) = 2l(2) and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the trace anomaly of the dual fi eld theory in the generic case, as well as when there exist logarithmic branches of nonlinear origin. As expected, the anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar fi eld. In the case of a vanishing anomaly, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy black hole solutions that, for some particular values of the parameters in the moduli potential, contains solutions of fourdimensional gauged N = 8 supergravity and its omegadeformation. Using the AdS/CFT duality dictionary, they correspond to triple trace deformations of the dual fi eld theory.



Anabalon, A., Astefanesei, D., & Mann, R. (2013). Exact asymptotically flat charged hairy black holes with a dilaton potential. J. High Energy Phys., (10), 22 pp.
Abstract: We find broad classes of exact 4dimensional asymptotically flat black hole solutions in EinsteinMaxwell theories with a nonminimally coupled dilaton and its nontrivial potential. We consider a few interesting limits, in particular, a regular generalization of the dilatonic ReissnerNordstrom solution and, also, smooth deformations of supersymmetric black holes. Further examples are provided for more general dilaton potentials. We discuss the thermodynamical properties and show that the first law is satisfied. In the nonextremal case the entropy depends, as expected, on the asymptotic value of the dilaton. In the extremal limit, the entropy is determined purely in terms of charges and is independent of the asymptotic value of the dilaton. The attractor mechanism can be used as a criterion for the existence of the regular solutions. Since there is a 'competition' between the effective potential and dilaton potential, we also obtain regular extremal black hole solutions with just one U(1) gauge field turned on.



Anabalon, A., Astefanesei, D., & Oliva, J. (2015). Hairy black hole stability in AdS, quantum mechanics on the halfline and holography. J. High Energy Phys., (10), 15 pp.
Abstract: We consider the linear stability of 4dimensional hairy black holes with mixed boundary conditions in Antide Sitter spacetinie. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N = 8 supergravity in four dimensions, m(2) = 2l(2). It is shown that the Schrodinger operator on the halfline, governing the S2, H2 or R2 invariant mode around the hairy black hole, allows for nontrivial selfadjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the selfadjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrodinger operator resembling the estimate of Simon for Schrodinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.



Anabalon, A., Canfora, F., Giacomini, A., & Oliva, J. (2012). Black holes with primary hair in gauged N=8 supergravity. J. High Energy Phys., (6), 12 pp.
Abstract: In this paper, we analyze the static solutions for the U(1)(4) consistent truncation of the maximally supersymmetric gauged supergravity in four dimensions. Using a new parametrization of the known solutions it is shown that for fixed charges there exist three Possible black hole configurations according to the pattern of symmetry breaking of the (scalars sector of the) Lagrangian. Namely a black hole without scalar fields, a black hole with a primary hair and a black hole with a secondary hair respectively. This is the first, exact, example of a black hole with a primary scalar hair, where both the black hole and the scalar fields are regular on and outside the horizon. The configurations with secondary and primary hair can be interpreted as a spontaneous symmetry breaking of discrete permutation and reflection symmetries of the action. It is shown that there exist a triple point in the thermodynamic phase space where the three solution coexist. The corresponding phase transitions are discussed and the free energies are written explicitly as function of the thermodynamic coordinates in the uncharged case. In the charged case the free energies of the primary hair and the hairless black hole are also given as functions of the thermodynamic coordinates.



Anabalon, A., Deruelle, N., & Julie, F. L. (2016). EinsteinKatz action,variational principle, Noether charges and the thermodynamics of AdSblack holes. J. High Energy Phys., (8), 15 pp.
Abstract: In this paper we describe 4dimensional gravity coupled to scalar and Maxwell fields by the EinsteinKatz action, that is, the covariant version of the “GammaGamma – GammaGamma” part of the Hilbert action supplemented by the divergence of a generalized “Katz vector”. We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a longrange scalar “hair” is present, only subfamilies of the solutions can obey that criterion. The KatzBicakLyndenBell (“KBL”) superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of “counterterms”. Finally, we show on the specific example of dyonic black holes that the subclass selected by our variational principle satisfies the first law of thermodynamics when their mass is de fined by the KBL superpotential.



Berkovits, N., & Chandia, O. (2014). Simplified pure spinor b ghost in a curved heterotic superstring background. J. High Energy Phys., (6), 12 pp.
Abstract: Using the RNSlike fermionic vector variables introduced in arXiv:1305.0693, the pure spinor b ghost in a curved heterotic superstring background is easily constructed. This construction simplifies and completes the b ghost construction in a curved background of arXiv:1311.7012.



Canfora, F., Gomberoff, A., Oh, S. H., Rojas, F., & SalgadoRebolledo, P. (2019). Meronic EinsteinYangMills black hole in 5D and gravitational spin from isospin effect. J. High Energy Phys., (6), 32 pp.
Abstract: We construct an analytic black hole solution in SU(2) EinsteinYangMills theory in five dimensions supporting a Meron field. The gauge field is proportional to a pure gauge and has a nontrivial topological charge. The wouldbe singularity at the Meron core gets shielded from the exterior by the black hole horizon. The metric has only one integration constant, namely, its ADM mass, which is shown to be finite once an appropriate boundary term is added to the action. The thermodynamics is also worked out, and a firstorder phase transition, similar to the one occurring in the ReissnerNordstrom case is identified. We also show that the solution produces a spin from isospin effect, i.e., even though the theory is constructed out of bosons only, the combined system of a scalar field and this background may become fermionic. More specifically, we study scalar excitations in this purely bosonic background and find that the system describes fermionic degrees of freedom at spatial infinity. Finally, for the asymptotically AdS(5) case, we study its consequences in the context of the AdS/CFT correspondence.



Chandia, O. (2014). The nonminimal heterotic pure spinor string in a curved background. J. High Energy Phys., (3), 16 pp.
Abstract: We study the nonminimal pure spinor string in a curved background. We find that the minimal BRST invariance implies the existence of a nontrivial stressenergy tensor for the minimal and nonminimal variables in the heterotic curved background. We find constraint equations for the b ghost. We construct the b ghost as a solution of these constraints.



Chandia, O., & Vallilo, B. C. (2015). C Ambitwistor pure spinor string in a type II supergravity background. J. High Energy Phys., (6), 15 pp.
Abstract: We construct the ambitwistor pure spinor string in a general type II supergravity background in the semiclassical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional worldsheet the case of AdS(5) x S (5) background.



Chandia, O., & Vallilo, B. C. (2015). Nonminimal fields of the pure spinor string in general curved backgrounds. J. High Energy Phys., (2), 16 pp.
Abstract: We study the coupling of the nonminimal ghost fields of the pure spinor superstring in general curved backgrounds. The coupling is found solving the consistency relations from the nilpotency of the nonminimal BRST charge.



Chandia, O., Bevilaqua, L. I., & Vallilo, B. C. (2014). AdS pure spinor superstring in constant backgrounds. J. High Energy Phys., (6), 16 pp.
Abstract: In this paper we study the pure spinor formulation of the superstring in AdS(5) x S5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.



Chandia, O., Linch, W. D., & Vallilo, B. C. (2011). Compactification of the heterotic pure spinor superstring II. J. High Energy Phys., (10), 22 pp.
Abstract: We study compactifications of the heterotic pure spinor superstring to six and four dimensions focusing on two simple CalabiYau orbifolds. We show that the correct spectrum can be reproduced only if, in the twisted sector, there remain exactly 5 and 2 pure spinor components untwisted, respectively. This naturally defines a “small” Hilbert space of untwisted variables. We point out that the cohomology of the reduced differential on this small Hilbert space can be used to describe the states in the untwisted sector, provided certain auxiliary constraints are defined. In dimension six, the mismatch between the number of pure spinor components in the small Hilbert space and the number of components of a sixdimensional pure spinor is interpreted as providing the projective measure on the analytic subspace (in the projective description) of harmonic superspace.



Chandia, O., Linch, W. D., & Vallilo, B. C. (2017). Master symmetry in the AdS(5) x S5 pure spinor string. J. High Energy Phys., (1), 15 pp.
Abstract: We lift the set of classical nonlocal symmetries recently studied by Klose, Loebbert, and Winkler in the context of Z(2) cosecs to the pure spinor description of the superstring in the AdS(5) x S5 background.



Chandia, O., Mikhailov, A., & Vallilo, B. C. (2013). A construction of integrated vertex operator in the pure spinor sigmamodel in AdS(5) x S5. J. High Energy Phys., 2013(11), 11 pp.
Abstract: Vertex operators in string theory me in two varieties: integrated and unintegrated. Understanding both types is important for the calculation of the string theory amplitudes. The relation between them is a descent procedure typically involving the bghost. In the pure spinor formalism vertex operators can be identified as cohomology classes of an infinitedimensional Lie superalgebra formed by covariant derivatives. We show that in this language the construction of the integrated vertex from an unintegrated vertex is very straightforward, and amounts to the evaluation of the cocycle on the generalized Lax currents.



Concha, P., Merino, N., Miskovic, O., Rodriguez, E., SalgadoRebolledo, P., & Valdivia, O. (2018). Asymptotic symmetries of threedimensional ChernSimons gravity for the Maxwell algebra. J. High Energy Phys., (10), 22 pp.
Abstract: We study a threedimensional ChernSimons gravity theory based on the Maxwell algebra. We find that the boundary dynamics is described by an enlargement and deformation of the bms(3) algebra with three independent central charges. This symmetry arises from a gravity action invariant under the local Maxwell group and is characterized by presence of Abelian generators which modify the commutation relations of the supertranslations in the standard bms(3) algebra. Our analysis is based on the charge algebra of the theory in the BMS gauge, which includes the known solutions of standard asymptotically flat case. The field content of the theory is different than the one of General Relativity, but it includes all its geometries as particular solutions. In this line, we also study the stationary solutions of the theory in ADM form and we show that the vacuum energy and the vacuum angular momentum of the stationary configuration are influenced by the presence of the gravitational Maxwell field.



Donnay, L., Giribet, G., González, H., Puhm, A., & Rojas, F. (2023). Celestial open strings at oneloop. J. High Energy Phys., (10), 47.
Abstract: We study celestial amplitudes in string theory at oneloop. Celestial amplitudes describe scattering processes of boost eigenstates and relate to amplitudes in the more standard basis of momentum eigenstates through a Mellin transform. They are thus sensitive to both the ultraviolet and the infrared, which raises the question of how to appropriately take the field theory limit of string amplitudes in the celestial basis. We address this problem in the context of fourdimensional genusone scattering processes of gluons in open string theory which reach the twodimensional celestial sphere at null infinity. We show that the Mellin transform commutes with the adequate limit in the worldsheet moduli space and reproduces the celestial oneloop field theory amplitude expressed in the worldline formalism. The dependence on alpha ' continues to be a simple overall factor in oneloop celestial amplitudes albeit with a power that is shifted with respect to treelevel, thus making manifest that the dimensionless parameter g102/alpha ' 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{69pt} \begin{document}$$ {g}_{10}<^>2/{\alpha}<^>{\prime 3} $$\end{document} organizes the loop expansion in the celestial basis. The precise way in which the amplitudes scale with this parameter depends on the number of noncompact dimensions in such a way that in 4 dimensions the scaling with alpha ' does agree with that at treelevel.



Gonzalez, H., A., & Rojas, F. (2021). The structure of IR divergences in celestial gluon amplitudes. J. High Energy Phys., (6), 171.
Abstract: The allloop resummation of SU(N) gauge theory amplitudes is known to factorize into an IRdivergent (soft and collinear) factor and a finite (hard) piece. The divergent factor is universal, whereas the hard function is a processdependent quantity.We prove that this factorization persists for the corresponding celestial amplitudes. Moreover, the soft/collinear factor becomes a scalar correlator of the product of renormalized Wilson lines defined in terms of celestial data. Their effect on the hard amplitude is a shift in the scaling dimensions by an infinite amount, proportional to the cusp anomalous dimension. This leads us to conclude that the celestialIRsafe gluon amplitude corresponds to a expectation value of operators dressed with Wilson line primaries. These results hold for finite N.In the large N limit, we show that the soft/collinear correlator can be described in terms of vertex operators in a Coulomb gas of colored scalar primaries with nearest neighbor interactions. In the particular cases of four and five gluons in planar N = 4 SYM theory, where the hard factor is known to exponentiate, we establish that the Mellin transform converges in the UV thanks to the fact that the cusp anomalous dimension is a positive quantity. In other words, the very existence of the full celestial amplitude is owed to the positivity of the cusp anomalous dimension.



Nastase, H., Rojas, F., & Rubio, C. (2022). Celestial IR divergences in general mostsubleadingcolor gluon and gravity amplitudes. J. High Energy Phys., (1), 136.
Abstract: Gluon amplitudes at mostsubleading order in the 1/N expansion share a remarkable simplicity with graviton amplitudes: collinear divergences are completely absent in both and, as a consequence, their full IR behavior arises from soft gluon/graviton exchange among the external states. In this paper we study the effect of allloop IR divergences of celestial mostsubleading color gluon amplitudes and their similarities with the celestial gravity case. In particular, a simple celestial exponentiation formula for the dipole part can be written. We also analize how this exponentiation is modified by nondipole contributions. Finally we also show that, in the Regge limit, the soft factor satisfies the KnizhnikZamolodchikov equation hinting at the possibility that, in this limit, an effective WessZuminoWitten model would describe the dynamics of the infrared sector.

