Abenza, J. F., Couturier, E., Dodgson, J., Dickmann, J., Chessel, A., Dumais, J., et al. (2015). Wall mechanics and exocytosis define the shape of growth domains in fission yeast. Nat. Commun., 6, 13 pp.
Abstract: The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42Scd1Scd2 nor the major cell wall synthesis regulators Bgs1Bgs4Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6Syb1Exo70. Forceful redirectioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked.

Allende, C., Sohn, E., & Little, C. (2015). Treelink: data integration, clustering and visualization of phylogenetic trees. BMC Bioinformatics, 16, 6 pp.
Abstract: Background: Phylogenetic trees are central to a wide range of biological studies. In many of these studies, tree nodes need to be associated with a variety of attributes. For example, in studies concerned with viral relationships, tree nodes are associated with epidemiological information, such as location, age and subtype. Gene trees used in comparative genomics are usually linked with taxonomic information, such as functional annotations and events. A wide variety of tree visualization and annotation tools have been developed in the past, however none of them are intended for an integrative and comparative analysis. Results: Treelink is a platformindependent software for linking datasets and sequence files to phylogenetic trees. The application allows an automated integration of datasets to trees for operations such as classifying a tree based on a field or showing the distribution of selected data attributes in branches and leafs. Genomic and proteonomic sequences can also be linked to the tree and extracted from internal and external nodes. A novel clustering algorithm to simplify trees and display the most divergent clades was also developed, where validation can be achieved using the data integration and classification function. Integrated geographical information allows ancestral character reconstruction for phylogeographic plotting based on parsimony and likelihood algorithms. Conclusion: Our software can successfully integrate phylogenetic trees with different data sources, and perform operations to differentiate and visualize those differences within a tree. File support includes the most popular formats such as newick and csv. Exporting visualizations as images, cluster outputs and genomic sequences is supported. Treelink is available as a web and desktop application at http://www. treelinkapp. com.

AlvarezGerding, X., CortesBullemore, R., Medina, C., RomeroRomero, J. L., InostrozaBlancheteau, C., Aquea, F., et al. (2015). Improved Salinity Tolerance in Carrizo Citrange Rootstock through Overexpression of Glyoxalase System Genes. Biomed Res. Int., 827951, 7 pp.
Abstract: Citrus plants are widely cultivated around the world and, however, are one of the most salt stress sensitive crops. To improve salinity tolerance, transgenic Carrizo citrange rootstocks that overexpress glyoxalase I and glyoxalase II genes were obtained and their salt stress tolerance was evaluated. Molecular analysis showed high expression for both glyoxalase genes (BjGlyI and PgGlyII) in 5H03 and 5H04 lines. Under control conditions, transgenic and wild type plants presented normal morphology. In salinity treatments, the transgenic plants showed less yellowing, marginal burn in lower leaves and showed less than 40% of leaf damage compared with wild type plants. The transgenic plants showed a significant increase in the dry weight of shoot but there are no differences in the root and complete plant dry weight. In addition, a higher accumulation of chlorine is observed in the roots in transgenic line 5H03 but in shoot it was lower. Also, the wild type plant accumulated around 20% more chlorine in the shoot compared to roots. These results suggest that heterologous expression of glyoxalase system genes could enhance salt stress tolerance in Carrizo citrange rootstock and could be a good biotechnological approach to improve the abiotic stress tolerance in woody plant species.

Anabalon, A., Astefanesei, D., & Choque, D. (2015). On the thermodynamics of hairy black holes. Phys. Lett. B, 743, 154–159.
Abstract: We investigate the thermodynamics of a general class of exact 4dimensional asymptotically Antide Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the SchwarzschildAdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the HawkingPage phase transition. (C) 2015 The Authors. Published by Elsevier B.V.

Anabalon, A., Astefanesei, D., & Martinez, C. (2015). Mass of asymptotically antide Sitter hairy spacetimes. Phys. Rev. D, 91(4), 6 pp.
Abstract: In the standard asymptotic expansion of fourdimensional static asymptotically flat spacetimes, the coefficient of the first subleading term of the lapse function can be identified with the mass of the spacetime. Using the Hamiltonian formalism we show that, in asymptotically locally antide Sitter spacetimes endowed with a scalar field, the mass can read off in the same way only when the boundary conditions are compatible with the asymptotic realization of the antide Sitter symmetry. Since the mass is determined only by the spatial metric and the scalar field, the above effect appears by considering not only the constraints, but also the dynamic field equations, which relate the spatial metric with the lapse function. In particular, this result implies that some prescriptions for computing the mass of a hairy spacetime are not suitable when the scalar field breaks the asymptotic antide Sitter invariance.

Anabalon, A., Astefanesei, D., & Oliva, J. (2015). Hairy black hole stability in AdS, quantum mechanics on the halfline and holography. J. High Energy Phys., (10), 15 pp.
Abstract: We consider the linear stability of 4dimensional hairy black holes with mixed boundary conditions in Antide Sitter spacetinie. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N = 8 supergravity in four dimensions, m(2) = 2l(2). It is shown that the Schrodinger operator on the halfline, governing the S2, H2 or R2 invariant mode around the hairy black hole, allows for nontrivial selfadjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the selfadjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrodinger operator resembling the estimate of Simon for Schrodinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.

Antico, F. C., De la Varga, I., Esmaeeli, H. S., Nantung, T. E., Zavattieri, P. D., & Weiss, W. J. (2015). Using accelerated pavement testing to examine traffic opening criteria for concrete pavements. Constr. Build. Mater., 96, 86–95.
Abstract: The risk of cracking in a concrete pavement that is opened to traffic at early ages is related to the maximum tensile stress sigma(I), that develops in the pavement and its relationship to the measured, age dependent, flexural strength of a beam,f(r). The stress that develops in the pavement is due to several factors including traffic loading and restrained volume change caused by thermal or hygral variations. The stress that develops is also dependent on the timedependent mechanical properties, pavement thickness, and subgrade stiffness. There is a strong incentive to open many pavements to traffic as early as possible to allow construction traffic or traffic from the traveling public to use the pavement. However, if the pavement is opened to traffic too early, cracking may occur that may compromise the service life of the pavement. The purpose of this paper is twofold: (1) to examine the current opening strength requirements for concrete pavements (typically a flexural strength from beams, f(r)) and (2) to propose a criterion based on the timedependent changes of sigma(I)/f(r), which accounts for pavement thickness and subgrade stiffness without adding unnecessary risk for premature cracking. An accelerated pavement testing (APT) facility was used to test concrete pavements that are opened to traffic at an early age to provide data that can be compared with an analytical model to determine the effective sigma(I)/f(r), based on the relevant features of the concrete pavement, the subgrade, and the traffic load. It is anticipated that this type of opening criteria can help the decision makers in two ways: (1) it can open pavement sections earlier thereby reducing construction time and (2) it may help to minimize the use of materials with overly accelerated strength gain that are suspected to be more susceptible to develop damage at early ages than materials that gain strength more slowly. (C) 2015 Elsevier Ltd. All rights reserved.

Asenjo, F. A., & Comisso, L. (2015). Generalized Magnetofluid Connections in Relativistic Magnetohydrodynamics. Phys. Rev. Lett., 114(11), 5 pp.
Abstract: The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermalinertial, thermal electromotive, Hall, and currentinertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.

Asenjo, F. A., Comisso, L., & Mahajan, S. M. (2015). Generalized magnetofluid connections in pair plasmas. Phys. Plasmas, 22(12), 4 pp.
Abstract: We extend the magnetic connection theorem of ideal magnetohydrodynamics to nonideal relativistic pair plasmas. Adopting a generalized Ohm's law, we prove the existence of generalized magnetofluid connections that are preserved by the plasma dynamics. We show that these connections are related to a general antisymmetric tensor that unifies the electromagnetic and fluid fields. The generalized magnetofluid connections set important constraints on the plasma dynamics by forbidding transitions between configurations with different magnetofluid connectivity. An approximated solution is explicitly shown where the corrections due to current inertial effects are found. (C) 2015 AIP Publishing LLC.

Asenjo, F. A., & Mahajan, S. M. (2015). Relativistic quantum vorticity of the quadratic form of the Dirac equation. Phys. Scr., 90(1), 4 pp.
Abstract: We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the FeynmanGellMann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and nonrelativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system.

AstorgaElo, M., RamirezFlandes, S., DeLong, E. F., & Ulloa, O. (2015). Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone. Isme J., 9(5), 1264–1267.
Abstract: Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated lowlightadapted Prochlorococcus from the nutrientrich, lowlight, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus.

Barrera, J., Cancela, H., & Moreno, E. (2015). Topological optimization of reliable networks under dependent failures. Oper. Res. Lett., 43(2), 132–136.
Abstract: We address the design problem of a reliable network. Previous work assumes that link failures are independent. We discuss the impact of dropping this assumption. We show that under a commoncause failure model, dependencies between failures can affect the optimal design. We also provide an integerprogramming formulation to solve this problem. Furthermore, we discuss how the dependence between the links that participate in the solution and those that do not can be handled. Other dependency models are discussed as well. (C) 2014 Elsevier B.V. All rights reserved.

Becker, F., Kosowski, A., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., et al. (2015). Allowing each node to communicate only once in a distributed system: shared whiteboard models. Distrib. Comput., 28(3), 189–200.
Abstract: In this paper we study distributed algorithms on massive graphs where links represent a particular relationship between nodes (for instance, nodes may represent phone numbers and links may indicate telephone calls). Since such graphs are massive they need to be processed in a distributed way. When computing graphtheoretic properties, nodes become natural units for distributed computation. Links do not necessarily represent communication channels between the computing units and therefore do not restrict the communication flow. Our goal is to model and analyze the computational power of such distributed systems where one computing unit is assigned to each node. Communication takes place on a whiteboard where each node is allowed to write at most one message. Every node can read the contents of the whiteboard and, when activated, can write one small message based on its local knowledge. When the protocol terminates its output is computed from the final contents of the whiteboard. We describe four synchronization models for accessing the whiteboard. We show that message size and synchronization power constitute two orthogonal hierarchies for these systems. We exhibit problems that separate these models, i.e., that can be solved in one model but not in a weaker one, even with increased message size. These problems are related to maximal independent set and connectivity. We also exhibit problems that require a given message size independently of the synchronization model.

Bitran, G., & Mondschein, S. (2015). Why individualized contact policies are critical in the mass affluent market. Acad.Rev. Latinoam. Adm., 28(2), 251–272.
Abstract: Purpose – The purpose of this paper is to study the optimal contact policies for customers that belong to the mass affluent market. Design/methodology/approach – The authors formulate a stochastic dynamic programming model to determine the optimal frequency of contacts in order to maximize the expected return of the company. Findings – The authors show that personalized marketing strategies provide a competitive advantage to companies that contact their customers directly through, for example, phone calls or meetings. The authors show that a threshold policy is only optimal for customers with increasing sensitivity to contact. In all other cases, optimal policies might have a less intuitive structure. The authors also study the importance of the size of the customer database and determine the optimal maximum recency when maintenance costs are present. Practical implications – Contact policies should be tailored for each company/industry individually, due to their sensitivity to customers' purchasing behavior.

Caceres, G., Nasirov, S., Zhang, H. L., & ArayaLetelier, G. (2015). Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter. Sustainability, 7(1), 422–440.
Abstract: This paper addresses an economic study of the installation of photovoltaic (PV) solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE) was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels' surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: ongrid PV plants and offgrid PV plants.

Canessa, E., & Chaigneau, S. (2015). Calibrating AgentBased Models Using a Genetic Algorithm. Stud. Inform. Control, 24(1), 79–90.
Abstract: We present a Genetic Algorithm (GA)based tool that calibrates Agentbased Models (ABMs). The GA searches through a userdefined set of input parameters of an ABM, delivering values for those parameters so that the output time series of an ABM may match the real system's time series to certain precision. Once that set of possible values has been available, then a domain expert can select among them, the ones that better make sense from a practical point of view and match the explanation of the phenomenon under study. In developing the GA, we have had three main goals in mind. First, the GA should be easily used by nonexpert computer users and allow the seamless integration of the GA with different ABMs. Secondly, the GA should achieve a relatively short convergence time, so that it may be practical to apply it to many situations, even if the corresponding ABMs exhibit complex dynamics. Thirdly, the GA should use a few data points of the real system's time series and even so, achieve a sufficiently good match with the ABM's time series to attaining relational equivalence between the real system under study and the ABM that models it. That feature is important since social science longitudinal studies commonly use few data points. The results show that all of those goals have been accomplished.

Chandia, O., & Vallilo, B. C. (2015). Nonminimal fields of the pure spinor string in general curved backgrounds. J. High Energy Phys., (2), 16 pp.
Abstract: We study the coupling of the nonminimal ghost fields of the pure spinor superstring in general curved backgrounds. The coupling is found solving the consistency relations from the nilpotency of the nonminimal BRST charge.

Chandia, O., & Vallilo, B. C. (2015). C Ambitwistor pure spinor string in a type II supergravity background. J. High Energy Phys., (6), 15 pp.
Abstract: We construct the ambitwistor pure spinor string in a general type II supergravity background in the semiclassical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional worldsheet the case of AdS(5) x S (5) background.

Chuaqui, M., & Hernandez, R. (2015). AhlforsWeill extensions in several complex variables. J. Reine Angew. Math., 698, 161–179.
Abstract: We derive an AhlforsWeill type extension for a class of holomorphic mappings defined in the ball Bn, generalizing the formula for Nehari mappings in the disk. The class of mappings holomorphic in the ball is defined in terms of the Schwarzian operator. Convexity relative to the Bergman metric plays an essential role, as well as the concept of a weakly linearly convex domain. The extension outside the ball takes values in the projective dual to Cn, that is, in the set of complex hyperplanes.

Collins, C. J., Vivanco, J. F., Sokn, S. A., Williams, B. O., Burgers, T. A., & Ploeg, H. L. (2015). Fracture healing in mice lacking Pten in osteoblasts: a microcomputed tomography imagebased analysis of the mechanical properties of the femur. J. Biomech., 48(2), 310–317.
Abstract: In the United States, approximately eight million osseous fractures are reported annually, of which 510% fail to create a bony union. Osteoblastspecific deletion of the gene Pten in mice has been found to stimulate bone growth and accelerate fracture healing. Healing rates at four weeks increased in femurs from Pten osteoblast conditional knockout mice (PtenCKO) compared to wildtype mice (WT) of the same genetic strain as measured by an increase in mechanical stiffness and failure load in fourpoint bending tests. Preceding mechanical testing, each femur was imaged using a Skyscan 1172 microcomputed tomography (mu CT) scanner (Skyscan, Kontich, Belgium). The present study used μCT imagebased analysis to test the hypothesis that the increased femoral fracture force and stiffness in PtenCKO were due to greater section properties with the same effective material properties as that of the WT. The second moment of area and section modulus were computed in ImageJ 1.46 (National Institutes of Health) and used to predict the effective flexural modulus and the stress at failure for fourteen pairs of intact and callus WT and twelve pairs of intact and callus PtenCKO femurs. For callus and intact femurs, the failure stress and tissue mineral density of the PtenCKO and WT were not different; however, the section properties of the PtenCKO were more than twice as large 28 days postfracture. It was therefore concluded, when the gene Pten was conditionally knockedout in osteoblasts, the resulting increased bending stiffness and force to fracture were due to increased section properties. (C) 2014 Elsevier Ltd. All rights reserved.
