Home | << 1 2 3 4 5 >> |
![]() |
Menares, F., Carrasco, M. A., Gonzalez, B., Fuentes, I., & Casanova, M. (2017). Phytostabilization Ability of Baccharis linearis and Its Relation to Properties of a Tailings-Derived Technosol. Water Air Soil Pollut., 228(5), 17 pp.
Abstract: Spontaneous colonization of mine tailing dams by plants is a potential tool for phytostabilization of such reservoirs. However, the physical and chemical properties of each mine tailings deposit determine the success of natural plant establishment. The plant Baccharis linearis is the main native nanophanerophyte species (evergreen sclerophyllous shrub) that naturally colonizes abandoned copper tailings dams in arid to semiarid north-central Chile. This study compare growth of B. linearis against the physical and chemical properties of a Technosol derived from copper mine tailings. Five sites inside the deposit were selected based on B. linearis vegetation density (VD), at two soil sampling depths under the canopy of adult individuals. Physical and chemical properties of tailings samples and nutrient concentrations in tailings and plants were each determined. Some morphological features of the plants (roots and aerial parts) were also quantified. There were significant differences in soil available water capacity (AW) and relative density (Rd) at different VD. Sites with low AW and high Rd had lower nutrient concentrations and higher Zn content in tailings, decreased infection by arbuscular mycorrhizal fungi, and increased fine root abundance and root hair length in individual plants. In contrast, higher AW, which was positively correlated with fine particles and organic matter content, had a positive effect on vegetation coverage, increased N and P contents in tailings, and increased N contents in leaf tissues, even when available N and P levels in tailings were low. Multiple constraints, such as low AW, N, P, and B contents and high Zn concentrations in the tailings restricted vegetation coverage, but no phenotypic differences were observed between individuals. Thus, in order to promote dense coverage by B. linearis, water retention in these tailings must be improved by increasing colloidal particles (organic and/or inorganic) contents, which have a positive effect on colonization by this species.
|
Moffat, R., Jadue, C., Beltran, J. F., & Herrera, R. (2017). Experimental evaluation of geosynthetics as reinforcement for shotcrete. Geotext. Geomembr., 45(3), 161–168.
Abstract: One of the commonly used stabilization systems for rock tunnels is shotcrete. This fine aggregate mortar is usually reinforced for improving its tensile and shear strength. In deep tunnels, its capacity to absorb energy has been recently considered for design purposes, as large displacements of the wall are expected. Two of the most used materials of reinforcement are steel welded-wire mesh and fibers (steel or polypropylene) in the shotcrete mix. This study presents the results and discussion of an experimental test program conducted to obtain the load-deformation curves of reinforced shotcrete, according to ASTM C 1550, using geosynthetics grids and geotextiles as alternative reinforcement materials. In addition, plain shotcrete and steel welded-wire mesh reinforced shotcrete specimens are also considered in the experimental program as benchmark cases. The experimental results are analyzed in terms of maximum strength and toughness. Results show that the use of geosynthetics as a reinforcement material is a promising alternative to obtain shotcrete with energy absorption capacity comparable with the most common reinforcement materials used. (C) 2017 Elsevier Ltd. All rights reserved.
|
Montane, M., Caceres, G., Villena, M., & O'Ryan, R. (2017). Techno-Economic Forecasts of Lithium Nitrates for Thermal Storage Systems. Sustainability, 9(5), 15 pp.
Abstract: Thermal energy storage systems (TES) are a key component of concentrated solar power (CSP) plants that generally use a NaNO3/KNO3 mixture also known as solar salt as a thermal storage material. Improvements in TES materials are important to lower CSP costs, increase energy efficiency and competitiveness with other technologies. A novel alternative examined in this paper is the use of salt mixtures with lithium nitrate that help to reduce the salt's melting point and improve thermal capacity. This in turn allows the volume of materials required to be reduced. Based on data for commercial plants and the expected evolution of the lithium market, the technical and economic prospects for this alternative are evaluated considering recent developments of Lithium Nitrates and the uncertain future prices of lithium. Through a levelized cost of energy (LCOE) analysis it is concluded that some of the mixtures could allow a reduction in the costs of CSP plants, improving their competitiveness.
Keywords: CSP; lithium based nitrates; thermal energy storage; lithium market
|
Moreno, E., Beghelli, A., & Cugini, F. (2017). Traffic engineering in segment routing networks. Comput. Netw., 114, 23–31.
Abstract: Segment routing (SR) has been recently proposed as an alternative traffic engineering (TE) technology enabling relevant simplifications in control plane operations. In the literature, preliminary investigations on SR have focused on label encoding algorithms and experimental assessments, without carefully addressing some key aspects of SR in terms of the overall network TE performance. In this study, ILP models and heuristics are proposed and successfully utilized to assess the TE performance of SR-based packet networks. Results show that the default SR behavior of exploiting equal cost multiple paths (ECMP) may lead to several drawbacks, including higher network resource utilization with respect to cases where ECMP is avoided. Moreover, results show that, by properly performing segment list computations, it is possible to achieve very effective TE solutions by just using a very limited number of stacked labels, thus successfully exploiting the benefits of the SR technology. (C) 2017 Elsevier B.V. All rights reserved.
Keywords: Segment routing; Integer Linear Programming; Heuristic
|
Moreno, E., Rezakhah, M., Newman, A., & Ferreira, F. (2017). Linear models for stockpiling in open-pit mine production scheduling problems. Eur. J. Oper. Res., 260(1), 212–221.
Abstract: The open pit mine production scheduling (OPMPS) problem seeks to determine when, if ever, to extract each notional, three-dimensional block of ore and/or waste in a deposit and what to do with each, e.g., send it to a particular processing plant or to the waste dump. This scheduling model maximizes net present value subject to spatial precedence constraints, and resource capacities. Certain mines use stockpiles for blending different grades of extracted material, storing excess until processing capacity is available, or keeping low-grade ore for possible future processing. Common models assume that material in these stockpiles, or “buckets,” is theoretically immediately mixed and becomes homogeneous. We consider stockpiles as part of our open pit mine scheduling strategy, propose multiple models to solve the OPMPS problem, and compare the solution quality and tractability of these linear-integer and nonlinear-integer models. Numerical experiments show that our proposed models are tractable, and correspond to instances which can be solved in a few seconds up to a few minutes in contrast to previous nonlinear models that fail to solve. (C) 2016 Elsevier B.V. All rights reserved.
|
Munoz, F. D., Pumarino, B. J., & Salas, I. A. (2017). Aiming low and achieving it: A long-term analysis of a renewable policy in Chile. Energy Econ., 65, 304–314.
Abstract: We use an Integrated Resource Planning model to assess the costs of meeting a 70% renewables target by 2050 in Chile. This model is equivalent to a long-term equilibrium in electricity and renewable energy certificate (REC) markets under perfect competition. We consider different scenarios of demand growth, resource eligibility (e.g., large hydropower), and transmission system configuration. Our numerical results indicate that the sole characteristics of the available renewable resources in the country and reductions in technology costs will provide sufficient economic incentives for private investors to supply a fraction of renewables larger than 70% for a broad range of scenarios, meaning that the proposed target will likely remain a symbolic government effort. Increasing transmission capacity between the northern and central interconnected systems could reduce total system cost by $400 million per year and increase the equilibrium share of non conventional renewable energy (NCRE) in the system from 45% to 52%, without the need for any additional policy incentive. Surprisingly, imposing a 70% of NCRE by 2050 results in a REC price lower than the noncompliance fine used for the current target of 20% of NCRE by 2025, the latter of which represents the country's maximum willingness to pay for the attributes of electricity supplied from NCRE resources. (C) 2017 Elsevier B.V. All rights reserved.
|
Munoz, F. D., van der Weijde, A. H., Hobbs, B. F., & Watson, J. P. (2017). Does risk aversion affect transmission and generation planning? A Western North America case study. Energy Econ., 64, 213–225.
Abstract: We investigate the effects of risk aversion on optimal transmission and generation expansion planning in a competitive and complete market. To do so, we formulate a stochastic model that minimizes a weighted average of expected transmission and generation costs and their conditional value at risk (CVaR). We show that the solution of this optimization problem is equivalent to the solution of a perfectly competitive risk averse Stackelberg equilibrium, in which a risk-averse transmission planner maximizes welfare after which risk-averse generators maximize profits. This model is then applied to a 240-bus representation of the Western Electricity Coordinating Council, in which we examine the impact of risk aversion on levels and spatial patterns of generation and transmission investment. Although the impact of risk aversion remains small at an aggregate level, state-level impacts on generation and transmission investment can be significant, which emphasizes the importance of explicit consideration of risk aversion in planning models. (C) 2017 Elsevier B.V. All rights reserved.
|
Nasirov, S., Agostini, C. A., & Silva, C. (2017). An assessment of the implementation of renewable energy sources in the light of concerns over Chilean policy objectives. Energy Sources Part B, 12(8), 715–721.
Abstract: In recent years, the development of renewable energies in the electricity market in Chile has gained significant attention as a key alternative for energy sources diversification and meeting three key policy objectives: energy availability, environmental protection, and social-economic development. This study aims to assess various renewable energy sources in order to select suitable sources to accomplish the different policy goals in a country like Chile. For this purpose, a Multi-Criteria Decision Analysis (MCDA) method is employed to evaluate the relative importance of policy objectives. In addition, a sensitivity analysis is conducted to build various different policy scenarios measuring the impact of variations on the current weights of the decision criteria. The results show that solar, wind, and small hydro are the preferred sources in the Chilean renewable energy portfolio, maximizing the objective of meeting the three policy goals at the same time.
Keywords: Chile; MCDA; policy objectives; renewable energy; sensitivity analysis
|
Osores, S. J. A., Lagos, N. A., Martin, V. S., Manriquez, P. H., Vargas, C. A., Torres, R., et al. (2017). Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment. J. Exp. Mar. Biol. Ecol., 490, 1–12.
Abstract: Geographically widespread species must cope with environmental differences between habitats. Information concerning geographic variations in response to climate variability is critical because many morphological, life history and physiological traits show variation across space. Reciprocal transplant experiments have shown to be relevant to evaluate the role of phenotypic plasticity and potential local adaptation in ecophysiological responses when coping with environmental variability. In this study, we characterize through reciprocal transplant experiments the reaction norms of morphological, biochemical, physiological and life-history traits between two intertidal populations of the socioeconomically important mussel Mytilus chilensis, inhabiting contrasting local environments (estuarine vs coastal habitats). We found a gradient in phenotypic plasticity with plastic trait responses in metabolic, ingestion and clearance rates, and in HsP(70) gene expression, and some traits with responses more canalized as growth and calcification rates. This emphasizes that responses not only vary across different local populations but also in different traits in M. chilensis, thus it is difficult to establish an overall trend of the responses at integrated organismal level. Moreover, the synergistic interaction of factors such as salinity and carbonate system parameters evaluated make it necessary to study the response at the population level with emphasis on benthic species important in aquaculture. Finally, field studies such as this one are useful for documenting the patterns of traits variation that occur in nature, identifying possible causes of such variation, and generating testable hypotheses for future controlled experiments. (C) 2017 Elsevier B.V. All rights reserved.
|
Parra, P. F., & Moehle, J. P. (2017). Stability of Slender Wall Boundaries Subjected to Earthquake Loading. ACI Struct. J., 114(6), 1627–1636.
Abstract: Global instability of slender reinforced concrete walls occurs when the concrete section buckles out-of-plane over a portion of the wall length and height. Theoretical and numerical analyses were conducted on axially loaded prismatic members to evaluate the onset of global instability under tension/compression load cycles. A buckling theory suitable for hand calculations is introduced and evaluated using data available in the literature from tests conducted on columns. Computer simulations using force-based nonlinear elements with fibers are used to numerically simulate the tests and to study the influence of non-uniform strain profiles along the height of the member. The study shows that the onset of buckling can be identified using either the proposed buckling theory or finite element models. Furthermore, buckling is affected by gradients of axial load or strain along the length of the member. Design recommendations are made to inhibit global wall buckling during earthquakes.
Keywords: buckling; earthquake; reinforced concrete; slenderness; wall boundary element
|
Pedrouso, A., del Rio, A. V., Campos, J. L., Mendez, R., & Mosquera-Corral, A. (2017). Biomass aggregation influences NaN3 short-term effects on anammox bacteria activity. Water Sci. Technol., 75(5), 1007–1013.
Abstract: The main bottleneck to maintain the long-term stability of the partial nitritation-anammox processes, especially those operated at low temperatures and nitrogen concentrations, is the undesirable development of nitrite oxidizing bacteria (NOB). When this occurs, the punctual addition of compounds with the capacity to specifically inhibit NOB without affecting the process efficiency might be of interest. Sodium azide (NaN3) is an already known NOB inhibitor which at low concentrations does not significantly affect the ammonia oxidizing bacteria (AOB) activity. However, studies about its influence on anammox bacteria are unavailable. For this reason, the objective of the present study was to evaluate the effect of NaN3 on the anammox activity. Three different types of anammox biomass were used: granular biomass comprising AOB and anammox bacteria (G1), anammox enriched granules (G2) and previous anammox granules disaggregated (F1). No inhibitory effect of NaN3 was measured on G1 sludge. However, the anammox activity decreased in the case of G2 and F1. Granular biomass activity was less affected (IC50 90 mg/L, G2) than flocculent one (IC50 5 mg/L, F1). Summing up, not only does the granular structure protect the anammox bacteria from the NaN3 inhibitory effect, but also the AOB act as a barrier decreasing the inhibition.
Keywords: anammox; granules; inhibition; NOB; partial nitritation; sodium azide
|
Pedrouso, A., del Rio, A. V., Morales, N., Vazquez-Padin, J. R., Campos, J. L., Mendez, R., et al. (2017). Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions. Sep. Purif. Technol., 186, 55–62.
Abstract: The application of autotrophic nitrogen removal processes in the main line of wastewater treatment plants will contribute to achieve its self-energy-sufficiency. However, the effective suppression of nitrite oxidizing bacteria (NOB) activity at the conditions of low temperature and low ammonium concentration (mainstream conditions) was identified as one of the main bottlenecks. In this study, stable partial nitritation at 16 degrees C and 50 mg NH4+-N/L was achieved maintaining inside the reactor free nitrous acid (FNA) concentrations inhibitory for NOB (>0.02 mg HNO2-N/L), without dissolved oxygen concentration control, The FNA inhibitory concentration was generated by the partial nitritation process, and its stimulation was studied with two different inhibitors: sodium azide and nitrite. The microbiological analysis revealed that, throughout the operational period with inhibitory FNA levels, the NOB populations (dominated by Nitrospira) were effectively washed out from the reactor. This is an advantage that allowed maintaining a good stability of the process, even when the FNA concentration was not enough to inhibit the NOB, taking about 40 days to develop significant activity. The observed delay on the NOB development is expected to enable the establishment of corrective actions to avoid the partial nitritation destabilization. The use of the FNA to achieve a stable partial nitritation process is recommended to profit from the natural pH decrease associated to the nitritation process and from its favoured accumulation at low temperatures as those from the mainstream. In this research study an analysis about the influence of ammonium and alkalinity concentrations was also performed to know in which scenarios the FNA inhibitory concentration can be achieved. (C) 2017 Elsevier B.V. All rights reserved.
|
Pereira, J., & Vasquez, O. C. (2017). The single machine weighted mean squared deviation problem. Eur. J. Oper. Res., 261(2), 515–529.
Abstract: This paper studies a single machine problem related to the just-In-Time (JIT) production objective in which the goal is to minimize the sum of weighted mean squared deviation of the completion times with respect to a common due date. In order to solve the problem, several structural and dominance properties of the optimal solution are investigated. These properties are then integrated within a branch and-cut approach to solve a time-indexed formulation of the problem. The results of a computational experiment with the proposed algorithm show that the method is able to optimally solve instances with up to 300 jobs within reduced running times, improving other integer programming approaches. (C) 2017 Elsevier B.V. All rights reserved.
Keywords: Scheduling; Single machine; JIT; Branch-and-cut; Dominance properties
|
Reid, A., Lechenault, F., Rica, S., & Adda-Bedia, M. (2017). Geometry and design of origami bellows with tunable response. Phys. Rev. E, 95(1), 10 pp.
Abstract: Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight and medicine. In spite of this interest, a general understanding of the mechanics of an origami folded cylinder has been elusive. With a newly developed set of geometrical tools, we have found an analytic solution for all possible cylindrical rigid-face states of both Miura-ori and triangular tessellations. Although an idealized bellows in both of these families may have two allowed rigid-face configurations over a well-defined region, the corresponding physical device, limited by nonzero material thickness and forced to balance hinge and plate-bending energy, often cannot stably maintain a stowed configuration. We have identified the parameters that control this emergent bistability, and we have demonstrated the ability to design and fabricate bellows with tunable deployability.
|
Rodriguez-Valdecantos, G., Manzano, M., Sanchez, R., Urbina, F., Hengst, M. B., Lardies, M. A., et al. (2017). Early successional patterns of bacterial communities in soil microcosms reveal changes in bacterial community composition and network architecture, depending on the successional condition. Appl. Soil Ecol., 120, 44–54.
Abstract: Soil ecosystem dynamics are influenced by the composition of bacterial communities and environmental conditions. A common approach to study bacterial successional dynamics is to survey the trajectories and patterns that follow bacterial community assemblages; however early successional stages have received little attention. To elucidate how soil type and chemical amendments influence both the trajectories that follow early compositional changes and the architecture of the community bacterial networks in soil bacterial succession, a time series experiment of soil microcosm experiments was performed. Soil bacterial communities were initially perturbed by dilution and subsequently subjected to three amendments: application of the pesticide 2,4-dichlorophenoxyacetic acid, as a pesticide-amended succession; application of cycloheximide, an inhibitor affecting primarily eukaryotic microorganisms, as a eukaryotic-inhibition bacterial succession; or application of sterile water as a non-perturbed control. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA gene isolated from soil microcosms was used to generate bacterial relative abundance datasets. Bray-Curtis similarity and beta diversity partition-based methods were applied to identify the trajectories that follow changes in bacterial community composition. Results demonstrated that bacterial communities exposed to these three conditions rapidly differentiated from the starting point (less than 12 h), followed different compositional change trajectories depending on the treatment, and quickly converged to a state similar to the initial community (48-72 h). Network inference analysis was applied using a generalized Lotka-Volterra model to provide an overview of bacterial OTU interactions and to follow the changes in bacterial community networks. This analysis revealed that antagonistic interactions increased when eukaryotes were inhibited, whereas cooperative interactions increased under pesticide influence. Moreover, central OTUs from soil bacterial community networks were also persistent OTUs, thus confirming the existence of a core bacterial community and that these same OTUs could plastically interact according to the perturbation type to quickly stabilize bacterial communities undergoing succession.
|
Seccatore, J., & de Theije, M. (2017). Socio-technical study of small-scale gold mining in Suriname. J. Clean Prod., 144, 107–119.
Abstract: Small-scale gold mining is Suriname's main economic sector, producing about two thirds of the nation's gold. Despite this, the sector is only very loosely regulated and most small-scale mining activities are informal. Surinamese miners are only a minority: the majority are Brazilian migrants, who have no right to the land and therefore have to pay a percentage of their production for land use. This study reports the findings of a field mission to small-scale mines in the region of Brokopondo reservoir. We document the technical aspects of small-scale gold mining in Suriname and contextualize this technology to social issues to identify links with cultural, political and sociological factors. Our findings show that informality and insecurity lead to a mine management culture that applies short-term solutions, such as cheap but polluting and inefficient technologies, and fails to produce stable, long-term mining conditions for clean, efficient technology and secure business planning. We conclude that the social context of the mining economy in Suriname strongly interacts with the technologies employed. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords: Artisanal mining; Suriname; Gold; Mercury
|
Selcho, M., Millan, C., Palacios-Munoz, A., Ruf, F., Ubillo, L., Chen, J. T., et al. (2017). Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat. Commun., 8, 13 pp.
Abstract: Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.
|
Silva, C., & Nasirov, S. (2017). Chile: Paving the way for sustainable energy planning. Energy Sources Part B, 12(1), 56–62.
Abstract: Over the last 20 years, economy of Chile grew faster than any other country in South America, thanks to its rigorous economic and political systems and its integration to the global economy. Nonetheless, Chile faces the continuing challenge of finding additional energy supplies to support its economic growth. The country has almost no fossil fuel resources and depends heavily on external sources that accounts for around 60% of its energy needs. However, this may change in the near future, as Chile has started developing its huge potential of sustainable energy sources. This paper examines strategically important energy alternatives for Chile, including energy efficiency (EE) programs, large hydro projects, renewable energy, and nuclear power, focusing on recent developments and remaining challenges. It also gives some recommendations providing alternatives to remove the obstacles.
Keywords: Chile; energy efficiency; energy sources; hydro and renewables
|
Silva, J. D., Amaya, J. G., & Basso, F. (2017). Development of a predictive model of fragmentation using drilling and blasting data in open pit mining. J. S. Afr. Inst. Min. Metall., 117(11), 1089–1094.
Abstract: This article presents predictive statistical models for fragmentation in open pit mines using drill-and-blast data. The main contribution of this work is the proposing of statistical models to determine the correlations between operational data and fragmentation. The practical use of these models allows the drill-and-blast parameters, i.e. burden, spacing, explosive, among others, to be optimized in order to obtain a more efficient size distribution.
Keywords: open pit blasting; linear models; blast fragmentation
|
Slane, J., Vivanco, J. F., Squire, M., & Ploeg, H. L. (2017). Characterization of the quasi-static and viscoelastic properties of orthopaedic bone cement at the macro and nanoscale. J. Biomed. Mater. Res. Part B, 105(6), 1461–1468.
Abstract: Acrylic bone cement is often used in total joint replacement procedures to anchor an orthopaedic implant to bone. Bone cement is a viscoelastic material that exhibits creep and stress relaxation properties, which have been previously characterized using a variety of techniques such as flexural testing. Nanoindentation has become a popular method to characterize polymer mechanical properties at the nanoscale due to the technique's high sensitivity and the small sample volume required for testing. The purpose of the present work therefore was to determine the mechanical properties of bone cement using traditional macroscale techniques and compare the results to those obtained from nanoindentation. To this end, the quasi-static and viscoelastic properties of two commercially available cements, Palacos and Simplex, were assessed using a combination of three-point bending and nanoindentation. Quasi-static properties obtained from nanoindentation tended to be higher relative to three-point bending. The general displacement and creep compliance trends were similar for the two methods. These findings suggest that nanoindentation is an attractive characterization technique for bone cement, due to the small sample volumes required for testing. This may prove particularly useful in testing failed/ retrieved cement samples from patients where material availability is typically limited. (C) 2016 Wiley Periodicals, Inc.
Keywords: bone cement; nanoindentation; mechanical testing; creep; orthopaedics
|