|
Nasirov, S., Cruz, E., Agostini, C. A., & Silva, C. (2019). Policy Makers' Perspectives on the Expansion of Renewable Energy Sources in Chile's Electricity Auctions. Energies, 12(21), 17 pp.
Abstract: Chile has become one of the first few countries where renewable sources compete directly with conventional generation in price-based auctions. Moreover, the results of energy auctions during the last few years show a remarkable transition from conventional fossil fuels to renewable energies. In fact, the energy auction in 2017, to provide energy to customers from distribution companies, achieved a massive expansion in renewable technology at one of the lowest prices in the world. These positive results prompted the question if such results were permanent or temporal due to factors with limited effects. In this regard, this paper studies the key factors that drove the significant rise of renewable technologies in Chilean energy auctions, obtaining valuable lessons for regulators, not only in Chile, but also in the region and the world. For this purpose, we considered a well-proven method based on a hybrid multicriteria decision-making model to examine and prioritize the main drivers of the expansion of renewables in auctions. The results showed that some specific characteristics of the auction design, particularly the hourly supply blocks, the lead time for project construction, and contract duration, were the most significant drivers for the expansion of renewables in energy auctions. Moreover, the results showed that, provided that the auction design accommodates for such drivers, solar energy ends up as the most attractive technology in the Chilean auctions. The research also shows the main findings are robust by the application of a probabilistic sensitivity analysis.
|
|
|
Navarro, H., Marco, L. M., Araneda, A. A., & Bennun, L. (2019). Spatial distribution of Si in Pinus Insigne (Pinus radiata) Wood using micro XRF by Synchrotron Radiation. J. Wood Chem. Technol., 39(3), 187–198.
Abstract: Silicon, while not an essential element, is known to have positive roles in certain vegetable species. For instance, it has been recognized to protect them from biotic and abiotic stress. Due to the fact that certain species accumulate the aforementioned element in their tissues, the determination of its concentration is of importance in different disciplines, such as dendrology, plant physiology, forest management, agroecology, and also in the wood industry. Usually, its quantification is preceded by a series of digestion steps that, aside from been time-consuming, and contamination-prone, prevents from conducting a spatial distribution of the element on the sample. In this research, samples of Pinus radiata wood were studied using a synchrotron radiation source that allowed direct scanning of its surface without any treatment, and the determination of silicon as a function of the position and the tree rings, using micro X-ray fluorescence (mu XRF). A quantification method based in the fundamental parameters approach was evaluated. It was found that silicon concentration increases near the latewood ring zones, showing a periodical behavior, related to seasonal environmental events.
|
|
|
O' Ryan, R., Benavides, C., Diaz, M., San Martin, J. P., & Mallea, J. (2019). Using probabilistic analysis to improve greenhouse gas baseline forecasts in developing country contexts: the case of Chile. Clim. Policy, 19(3), 299–314.
Abstract: In this paper, initial steps are presented toward characterizing, quantifying, incorporating and communicating uncertainty applying a probabilistic analysis to countrywide emission baseline forecasts, using Chile as a case study. Most GHG emission forecasts used by regulators are based on bottom-up deterministic approaches. Uncertainty is usually incorporated through sensitivity analysis and/or use of different scenarios. However, much of the available information on uncertainty is not systematically included. The deterministic approach also gives a wide range of variation in values without a clear sense of probability of the expected emissions, making it difficult to establish both the mitigation contributions and the subsequent policy prescriptions for the future. To improve on this practice, we have systematically included uncertainty into a bottom-up approach, incorporating it in key variables that affect expected GHG emissions, using readily available information, and establishing expected baseline emissions trajectories rather than scenarios. The resulting emission trajectories make explicit the probability percentiles, reflecting uncertainties as well as possible using readily available information in a manner that is relevant to the decision making process. Additionally, for the case of Chile, contradictory deterministic results are eliminated, and it is shown that, whereas under a deterministic approach Chile's mitigation ambition does not seem high, the probabilistic approach suggests this is not necessarily the case. It is concluded that using a probabilistic approach allows a better characterization of uncertainty using existing data and modelling capacities that are usually weak in developing country contexts. Key policy insights Probabilistic analysis allows incorporating uncertainty systematically into key variables for baseline greenhouse gas emission scenario projections. By using probabilistic analysis, the policymaker can be better informed as to future emission trajectories. Probabilistic analysis can be done with readily available data and expertise, using the usual models preferred by policymakers, even in developing country contexts.
|
|
|
Osorio, H., Nasirov, S., Agostini, C. A., & Silva, C. (2019). Assessing the economic viability of energy storage systems in the Chilean electricity system: An empirical analysis from arbitrage revenue perspectives. J. Renew. Sustain. Energy, 11(1), 015901.
Abstract: The emergence of high penetration rates of renewable energies in power systems presents a serious challenge in energy generation and load balance maintenance to ensure power network stability and reliability. Energy Storage Systems (ESSs) could play a relevant role in facing these challenges, as the technologies have passed the demo and prototype phases to a wide market implementation phase. The only remaining barrier for their implementation is their cost, but even this barrier is quickly disappearing. In this paper, we address the financial feasibility of storage technologies in electricity systems. In particular, we evaluate whether such technologies are economically sustainable and how far they are from becoming viable. For this purpose, we consider the Chilean electricity system and evaluate the maximum possible arbitrage revenues that could be achieved under ESS through benefiting from energy time shift, diminishing of transmission losses, and transmission upgrade deferral. The results show that the arbitrage revenues are still below the cost of storage systems. Further improvement in storage efficiency or a decrease in the cost of storage systems is still needed to make this type of investment financially viable in the near future.
|
|
|
Osorio-Valenzuela, L., Pereira, J., Quezada, F., & Vasquez, O. C. (2019). Minimizing the number of machines with limited workload capacity for scheduling jobs with interval constraints. Appl. Math. Model., 74, 512–527.
Abstract: In this paper, we consider a parallel machine scheduling problem in which machines have a limited workload capacity and jobs have deadlines and release dates. The problem is motivated by the operation of energy storage management systems for microgrids under emergency conditions and generalizes some problems that have already been studied in the literature for their theoretical value. In this work, we propose heuristic and exact algorithms to solve the problem. The heuristics are adaptations of classical bin packing heuristics in which additional conditions on the feasibility of a solution are imposed, whereas the exact method is a branch-and-price approach. The results show that the branch-andprice approach is able to optimally solve random instances with up to 250 jobs within a time limit of one hour, while the heuristic procedures provide near optimal solution within reduced running times. Finally, we also provide additional complexity results for a special case of the problem. (C) 2019 Elsevier Inc. All rights reserved.
|
|
|
Owerre, S. A., Mellado, P., & Baskaran, G. (2019). Photoinduced Floquet topological magnons in Kitaev magnets. Epl, 126(2), 7 pp.
Abstract: We study periodically driven pure Kitaev model and ferromagnetic phase of the Kitaev-Heisenberg model on the honeycomb lattice by off-resonant linearly and circularly polarized lights at zero magnetic field. Using a combination of linear spin wave and Floquet theories, we show that the effective time-independent Hamiltonians in the off-resonant regime map onto the corresponding anisotropic static spin model, plus a tunable photoinduced magnetic field along the [111] direction, which precipitates Floquet topological magnons and chiral magnon edge modes. They are tunable by the light amplitude and polarization. Similarly, we show that the thermal Hall effect induced by the Berry curvature of the Floquet topological magnons can also be tuned by the laser field. Our results pave the way for ultrafast manipulation of topological magnons in irradiated Kitaev magnets, and could play a pivotal role in the investigation of ultrafast magnon spin current generation in Kitaev materials. Copyright (C) EPLA, 2019
|
|
|
Pabon-Pereira, C., Slingerland, M., Hogervorst, S., van Lier, J., & Rabbinge, R. (2019). A Sustainability Assessment of Bioethanol (EtOH) Production: The Case of Cassava in Colombia. Sustainability, 11(14), 23 pp.
Abstract: This paper shows how system design determines sustainability outcomes of cassava bioethanol production in Colombia. The recovery of the energy contained in by-products is recommended as compared to single product production. In particular, this study assesses the energy, greenhouse gases, water, and land use performance of alternative cassava cascades working at different scales, highlighting the implications of including anaerobic digestion technology in the chain. The centralized systems showed a poorer energy and greenhouse gases performance as compared to decentralized ones in part due to the artificial drying of cassava chips in the centralized facility. Under solar drying of cassava chips, systems with anaerobic digestion produced three to five times more energy than demanded and produced greenhouse gas savings of 0.3 kgCO(2eq) L EtOH-1. The water balance output depends upon the water reuse within the ethanol industry, which demands 21-23 L EtOH-1. In the anaerobic digestion scenarios, assuming liquid flows are treated separately, complete water recovery is feasible. Land use for cassava cultivation was calculated to be 0.27-0.35 ha tEtOH(-1). The energy and water content of the material to digest, the options for digestate reuse, and the recovery of the methane produced are major considerations substantially influencing the role of anaerobic digestion within cassava cascade configurations.
|
|
|
Palmeiro-Sanchez, T., del Rio, A. V., Fra-Vazquez, A., Campos, J. L., & Mosquera-Corral, A. (2019). High -Yield Synthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolymers in a Mixed Microbial Culture: Effect of Substrate Switching and F/M Ratio. Ind. Eng. Chem. Res., 58(48), 21921–21926.
Abstract: The accumulation capacity of a mixed microbial culture (MMC) is affected if the substrate used in the accumulation experiments differs from the one used in the enrichment. For this reason, the effect of substrate switching was studied to determine the versatility of an MMC enriched in a mixture of volatile fatty acids (VFA(max)) to overcome this problem. The MMC was enriched using a VFA(max) composed of 48.3:24.3:7.3:14.7 CmM acetic (HAc), propionic (HPr), butyric (HBu), and valeric (HVa) acids, respectively. The accumulation capacity was tested using single VFAs (HAc, HPr, HBu, and HVa), as well as the VFA,Um used in the enrichment. The accumulation capacities were 52.8 +/- 4.7, 48.8 +/- 4.3, 45.2 3.0, 48.4 +/- 1.0, and 54.5 +/- 8.0 wt% for HAc, HPr, HBu, HVa, and rVFA(max) espectively, with polymer compositions of 50.6 15.1, 0.4 0.1, 63.2 1.5, 0.3 0.0, and 2.0 0.7 g 3-HB/g 3-14V, following the same order. The average yields were 0.84 0.08, 0.76 +/- 0.09, 0.74 0.02, 0.70 +/- 0.01, and 0.68 +/- 0.09 CmolpHA/CmolvF, for HVa, VFAmX, HAc, HBu, and HPr, respectively. The feed -to -microorganism (F/M) ratio showed that values of 1-7 CmolvFA/(Cmolx) in the accumulation experiments led to the optimal yields. Based on the results obtained, it seems feasible to enrich an MMC able to produce tailormade biopolymers from different VFAs at high yields.
|
|
|
Parra, P. F., Arteta, C. A., & Moehle, J. P. (2019). Modeling criteria of older non-ductile concrete frame-wall buildings. Bull. Earthq. Eng., 17(12), 6591–6620.
Abstract: The purpose of seismic provisions included in modern building codes is to obtain a satisfactory structural performance of buildings during earthquakes. However, in the United States and elsewhere, there are large inventories of buildings designed and constructed several decades ago, under outdated building codes. Some of these buildings are classified as non-ductile buildings. Currently, under the ATC-78 project, a methodology is being developed to identify seismically hazardous frame-wall buildings through a simple procedure that does not require full nonlinear analyses by the responsible engineer. This methodology requires the determination of the controlling plastic collapse mechanism, the base shear strength, and the ratio between the story drift ratio and the roof drift ratio, called parameter alpha, at collapse level. The procedure is calibrated with fully inelastic nonlinear analyses of archetype buildings. In this paper we first introduce an efficient scheme for modeling frame-wall buildings using the software OpenSees. Later, the plastic collapse mechanism, the base shear strength, and values of alpha are estimated from nonlinear static and dynamic analyses considering a large suite of ground-motion records that represent increasing hazard levels. The analytical experiment included several frame-wall combinations in 4 and 8-story buildings, intended to represent a broad range of conditions that can be found in actual buildings, where the simplified methodology to evaluate the risk of collapse can be applicable. Analysis results indicate that even walls of modest length may positively modify the collapse mechanism of nonductile bare frames preventing soft story failures.
|
|
|
Pichel, A., Moreno, R., Figueroa, M., Campos, J. L., Mendez, R., Mosquera-Corral, A., et al. (2019). How to cope with NOB activity and pig manure inhibition in a partial nitritation-anammox process? Sep. Purif. Technol., 212, 396–404.
Abstract: The treatment of pig manure can be performed by anaerobic digestion to diminish the organic matter content and produce biogas, and the resulting digestate has to be subsequently treated for the removal of nitrogenous compounds. The partial nitritation-anammox (PN-AMX) process constitutes an interesting alternative. In the present study, three different short experiments were initially performed to study the influence of nitrite oxidizing bacteria (NOB) present in the inoculum and the pig manure composition over the start-up of the PN-AMX process. The presence of NOB in the inoculum showed to be more crucial than the available anammox activity for a good performance of the PN-AMX process. Batch activity experiments showed a reduction of at least 44.4% in the maximum specific anammox activity due to the pig manure, probably owed to its conductivity (between 6 and 8 mS/cm). In the subsequent long-term operation of the PN-AMX process with non-diluted pre-treated pig manure, the NOB were successfully limited for DO concentrations of 0.1 mg O-2/L, and a nitrogen removal rate (NRR) of 0.1 g N/(L.d) was achieved despite the presence of significant NOB activity in the start-up. A strict control of the DO concentration, with an optimal range of 0.07-0.10 mg O-2/L, was fundamental to balance the removal of nitrogen by PN-AMX and prevent NOB activity. The presence of organic matter, with a ratio sCOD/N in the influent between 0.18 and 1.14 g/g, did not hinder the PN-AMX process, and the contribution of heterotrophic denitrification to the removal of nitrogen was less than 10%.
|
|
|
Rademaker, L., Abanin, D. A., & Mellado, P. (2019). Charge smoothening and band flattening due to Hartree corrections in twisted bilayer graphene. Phys. Rev. B, 100(20), 6 pp.
Abstract: Doping twisted bilayer graphene away from charge neutrality leads to an enormous buildup of charge inhomogeneities within each moire unit cell. Here, we show, using unbiased real-space self-consistent Hartree calculations on a relaxed lattice, that Coulomb interactions smoothen this charge imbalance by changing the occupation of earlier identified “ring” orbitals in the AB/BA region and “center” orbitals at the AA region. For hole doping, this implies an increase of the energy of the states at the Gamma point, leading to a further flattening of the flat bands and a pinning of the Van Hove singularity at the Fermi level. The charge smoothening will affect the subtle competition between different possible correlated phases.
|
|
|
Ramajo, L., Fernandez, C., Nunez, Y., Caballero, P., Lardies, M. A., & Poupin, M. J. (2019). Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci., 76(6), 1836–1849.
Abstract: Coastal biota is exposed to continuous environmental variability as a consequence of natural and anthropogenic processes. Responding to heterogeneous conditions requires the presence of physiological strategies to cope with the environment. Ecosystems influenced by upwelling endure naturally cold, acidic and hypoxic conditions, nevertheless they sustain major fisheries worldwide. This suggests that species inhabiting upwelling habitats possess physiological adaptations to handle high environmental variability. Here, we assessed the impact of the main upwelling drivers (temperature, pH and oxygen) in isolation and combined on eco-physiological responses of Chilean scallop Argopecten purpuratus. A. purpuratus responded to hypoxia by increasing their metabolic performance to maintain growth and calcification. Calcification was only affected by pH and increased under acidic conditions. Further, A. purpuratus juveniles prioritized calcification at the expense of growth under upwelling conditions. Increasing temperature had a significant impact by enhancing the physiological performance of A. purpuratus juveniles independently of oxygen and pH conditions, but this was associated with earlier and higher mortalities. Our results suggest that A. purpuratus is acclimated to short-term colder, acidic and hypoxic conditions, and provide important information of how this species responds to the heterogeneous environment of upwelling, which is significantly relevant in the climatic context of upwelling intensification.
|
|
|
Ramirez-Flandes, S., Gonzalez, B., & Ulloa, O. (2019). Redox traits characterize the organization of global microbial communities. Proc. Natl. Acad. Sci. U. S. A., 116(9), 3630–3635.
Abstract: The structure of biological communities is conventionally described as profiles of taxonomic units, whose ecological functions are assumed to be known or, at least, predictable. In environmental microbiology, however, the functions of a majority of microorganisms are unknown and expected to be highly dynamic and collectively redundant, obscuring the link between taxonomic structure and ecosystem functioning. Although genetic trait-based approaches at the community level might overcome this problem, no obvious choice of gene categories can be identified as appropriate descriptive units in a general ecological context. We used 247 microbial metagenomes from 18 biomes to determine which set of genes better characterizes the differences among biomes on the global scale. We show that profiles of oxidoreductase genes support the highest biome differentiation compared with profiles of other categories of enzymes, general protein-coding genes, transporter genes, and taxonomic gene markers. Based on oxidoreductases' description of microbial communities, the role of energetics in differentiation and particular ecosystem function of different biomes become readily apparent. We also show that taxonomic diversity is decoupled from functional diversity, e. g., grasslands and rhizospheres were the most diverse biomes in oxidoreductases but not in taxonomy. Considering that microbes underpin biogeochemical processes and nutrient recycling through oxidoreductases, this functional diversity should be relevant for a better understanding of the stability and conservation of biomes. Consequently, this approach might help to quantify the impact of environmental stressors on microbial ecosystems in the context of the global-scale biome crisis that our planet currently faces.
|
|
|
Ramirez-Morales, J. E., Tapia-Venegas, E., Campos, J. L., & Ruiz-Filippi, G. (2019). Operational behavior of a hydrogen extractive membrane bioreactor (HEMB) during mixed culture acidogenic fermentation. Int. J. Hydrog. Energy, 44(47), 25565–25574.
Abstract: Fermentative hydrogen production requires a continuous products-removal and effective upgrading steps to improve its general performance. Therefore, implementation of new technologies capable of achieving both requirements is essential. We present the operational behavior of a new process concept based on integration of membranes for gas separation and fermentation technology. This process, which we term as hydrogen extractive membrane bioreactor consists of coupling two dense polymeric membranes to a hydrogen producing culture. The process automatization of this system was essential to maintain the proper operational pressures in the membrane module and in the bioreactorgas-phase. This system was able to extract and partially separate the hydrogen and carbon dioxide generated. The hydrogen partial pressure was reduced from 55.5 to 49 KPa, which means an increase of hydrogen yield of 16.3% (1.1-1.28 mol-H-2/mol-glucose). Simultaneously, the implemented system generated a final hydrogen stream 13% (v/v) more concentrated than a conventional process. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
|
|
|
Ramirez-Sagner, G., & Munoz, F. D. (2019). The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis. Renew. Sust. Energ. Rev., 105, 38–47.
Abstract: Planning for new generation infrastructure in hydrothermal power systems requires consideration of a series of nonlinearities that are often ignored in planning models for policy analysis. In this article, three different capacity- planning models are used, one nonlinear and two linear ones, with different degrees of complexity, to quantify the impact of simplifying the head dependency of hydropower generation on investments in both conventional and renewable generators and system operations. It was found that simplified investment models can bias the optimal generation portfolios by, for example, understating the need for coal and combined-cycle gas units and overstating investments in wind capacity with respect to a more accurate nonlinear formulation, which could affect policy recommendations. It was also found that the economic cost of employing a simplified model can be below 10% of total system cost for most of the scenarios and system configurations analyzed, but as high as nearly 70% of total system cost for specific applications. Although these results are not general, they suggest that for certain system configurations both linear models can provide reasonable approximations to more complex nonlinear formulations. Uncertain water inflows were also considered using stochastic variants of all three planning models. Interestingly, if due to time or computational limitations only one of these two features could be accounted for, these results indicate that explicit modeling of the nonlinear-head effect in a deterministic model could yield better results (up to 0.6% of economic regret) than a stochastic linear model (up to 9.6% of economic regret) that considers the uncertainty of water inflows.
|
|
|
Reus, L. (2019). Currency risk in foreign currency accounts for small and medium-sized businesses. J. Risk, 22(2), 59–78.
Abstract: This paper estimates the currency exposure before and after the hedging of active foreign currency (FC) accounts, using stochastic models for spot exchange rates and cashflow movements. It examines a simple hedging policy that is typically applied by small and medium-sized businesses that do not have the expertise or resources to execute sophisticated strategies. The performance of the policy is measured through the derivation of analytical expressions for its profit and loss (P&L): that is, the earnings resulting from the valuation of the FC accounts and of the forward contracts taken. The results for five currencies show that the policy reduces P&L volatility compared with that for an unhedged account, without necessarily reducing the mean P&L. The mean and volatility of the P&L are not sensitive to the maturity of the contracts, and the volatility is almost linearly related to the currency volatility.
|
|
|
Reus, L. (2019). Optimizing the equity reassignment process: A novel application for family businesses. Heliyon, 5(7), e02050.
|
|
|
Reus, L., Pagnoncelli, B., & Armstrong, M. (2019). Better management of production incidents in mining using multistage stochastic optimization. Resour. Policy, 63, 13 pp.
Abstract: Among the many sources of uncertainty in mining are production incidents: these can be strikes, environmental issues, accidents, or any kind of event that disrupts production. In this work, we present a strategic mine planning model that takes into account these types of incidents, as well as random prices. When confronted by production difficulties, mines which have contracts to supply customers have a range of flexibility options including buying on the spot market, or taking material from a stockpile if they have one. Earlier work on this subject was limited in that the optimization could only be carried out for a few stages (up to 5 years) and in that it only analyzed the risk-neutral case. By using decomposition schemes, we are now able to solve large-scale versions of the model efficiently, with a horizon of up to 15 years. We consider decision trees with up to 615 scenarios and implement risk aversion using Conditional Value-at-Risk, thereby detecting its effect on the optimal policy. The results provide a “roadmap” for mine management as to optimal decisions, taking future possibilities into account. We present extensive numerical results using the new sddp.jl library, written in the Julia language, and discuss policy implications of our findings.
|
|
|
Rojas, E. R., & Dumais, J. (2019). A Mechanical Cusp Catastrophe Imposes a Universal Developmental Constraint on the Shapes of Tip-Growing Cells. In Biophysical Journal (Vol. 116, p. 121A). Cell Press.
|
|
|
Rubio, C. A., Asenjo, F. A., & Hojman, S. A. (2019). Quantum Cosmologies Under Geometrical Unification of Gravity and Dark Energy. Symmetry, 11(7).
Abstract: A Friedmann-Robertson-Walker Universe was studied with a dark energy component represented by a quintessence field. The Lagrangian for this system, hereafter called the Friedmann-Robertson-Walker-quintessence (FRWq) system, was presented. It was shown that the classical Lagrangian reproduces the usual two (second order) dynamical equations for the radius of the Universe and for the quintessence scalar field, as well as a (first order) constraint equation. Our approach naturally unified gravity and dark energy, as it was obtained that the Lagrangian and the equations of motion are those of a relativistic particle moving on a two-dimensional, conformally flat spacetime. The conformal metric factor was related to the dark energy scalar field potential. We proceeded to quantize the system in three different schemes. First, we assumed the Universe was a spinless particle (as it is common in literature), obtaining a quantum theory for a Universe described by the Klein-Gordon equation. Second, we pushed the quantization scheme further, assuming the Universe as a Dirac particle, and therefore constructing its corresponding Dirac and Majorana theories. With the different theories, we calculated the expected values for the scale factor of the Universe. They depend on the type of quantization scheme used. The differences between the Dirac and Majorana schemes are highlighted here. The implications of the different quantization procedures are discussed. Finally, the possible consequences for a multiverse theory of the Dirac and Majorana quantized Universe are briefly considered.
|
|