Home  << 1 2 3 4 5 6 7 8 >> 
Soto, P. C., Cartes, C., Davies, T. P., Olivari, J., Rica, S., & VogtGeisse, K. (2020). The anatomy of the 2019 Chilean social unrest. Chaos, 30(7), 14 pp.
Abstract: We analyze the 2019 Chilean social unrest episode, consisting of a sequence of events, through the lens of an epidemiclike model that considers global contagious dynamics. We adjust the parameters to the Chilean social unrest aggregated public data available from the Undersecretary of Human Rights and observe that the number of violent events follows a welldefined pattern already observed in various public disorder episodes in other countries since the 1960s. Although the epidemiclike models display a single event that reaches a peak followed by an exponential decay, we add standard perturbation schemes that may produce a rich temporal behavior as observed in the 2019 Chilean social turmoil. Although we only have access to aggregated data, we are still able to fit it to our model quite well, providing interesting insights on social unrest dynamics.

Gill, S., Wheatley, P. J., Cooke, B. F., Jordan, A., Nielsen, L. D., Bayliss, D., et al. (2020). NGTS11 b (TOI1847 b): A Transiting Warm Saturn Recovered from a TESS Singletransit Event. Astrophys. J. Lett., 898(1), 6 pp.
Abstract: We report the discovery of NGTS11 b (=TOI1847b), a transiting Saturn in a 35.46 day orbit around a mid Ktype star (Teff = 5050 +/ 80 K). We initially identified the system from a singletransit event in a TESS fullframe image light curve. Following 79 nights of photometric monitoring with an NGTS telescope, we observed a second full transit of NGTS11 b approximately one year after the TESS singletransit event. The NGTS transit confirmed the parameters of the transit signal and restricted the orbital period to a set of 13 discrete periods. We combined our transit detections with precise radialvelocity measurements to determine the true orbital period and measure the mass of the planet. We find NGTS11 b has a radius of 0.817 +/(0.028)(0.032) RJup, a mass of 0.344 +/(0.092)(0.073) MJup, and an equilibrium temperature of just 435 +/(34)(32) K, making it one of the coolest known transiting gas giants. NGTS11 b is the first exoplanet to be discovered after being initially identified as a TESS singletransit event, and its discovery highlights the power of intense photometric monitoring in recovering longerperiod transiting exoplanets from singletransit events.

Comisso, L., & Asenjo, F. A. (2020). Generalized magnetofluid connections in a curved spacetime. Phys. Rev. D, 102(2), 8 pp.
Abstract: The ideal magnetohydrodynamic theorem on the conservation of the magnetic connections between plasma elements is extended to nonideal relativistic plasmas in curved spacetime. The existence of generalized magnetofluid connections that are preserved by the plasma dynamics is formalized by means of a covariant connection equation that includes different nonideal effects. These generalized connections are constituted by 2dimensional hypersurfaces, which are linked to an antisymmetric tensor field that unifies the electromagnetic and fluid fields. They can be interpreted in terms of generalized magnetofluid vorticity field lines by considering a 3 + 1 foliation of spacetime and a time resetting projection that compensates for the loss of simultaneity between spatially separated events. The worldshects of the generalized magnetofluid vorticity field lines play a fundamental role in the plasma dynamics by prohibiting evolutions that do not preserve the magnetofluid connectivity.

Arbelaez, H., Bravo, V., Hernandez, R., Sierra, W., & Venegas, O. (2020). A new approach for the univalence of certain integral of harmonic mappings. Indag. Math.New Ser., 31(4), 525–535.
Abstract: The principal goal of this paper is to extend the classical problem of finding the values of alpha is an element of C for which either (f) over cap (alpha) (z) = integral(z)(0) (f (zeta)/zeta)(alpha) d zeta or f(alpha) (z) = integral(z)(0)(f' (zeta))(alpha)d zeta are univalent, whenever f belongs to some subclasses of univalent mappings in D, to the case of harmonic mappings, by considering the shear construction introduced by Clunie and SheilSmall in [4]. (C) 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Reus, L., Carrasco, J. A., & Pincheira, P. (2020). Do it with a smile: Forecasting volatility with currency options. Financ. Res. Lett., 34, 10 pp.
Abstract: We show that traditional measures of curvature and symmetry of the “smiles” improve volatility predictions in forex markets. We consider post crisis data at a daily basis for seven currencies vis a vis the American dollar: The British pound, the Euro, the Australian dollar, the Japanese yen, the Brazilian real and the Mexican and Chilean peso. While our results are robust to the option currency and maturity, they are particularly strong for latinAmerican currencies and options with longer maturity. We find that the simultaneous inclusion of skewness and kurtosis to a forecasting model significantly improves its predictive accuracy.

Calderon, F. I., Lozada, A., BorquezParedes, D., Olivares, R., Davalos, E. J., Saavedra, G., et al. (2020). BERAdaptive RMLSA Algorithm for WideArea Flexible Optical Networks. IEEE Access, 8, 128018–128031.
Abstract: Widearea optical networks face significant transmission challenges due to the relentless growth of bandwidth demands experienced nowadays. Network operators must consider the relationship between modulation format and maximum reach for each connection request due to the accumulation of physical layer impairments in optical fiber links, to guarantee a minimum quality of service (QoS) and quality of transmission (QoT) to all connection requests. In this work, we present a BERadaptive solution to solve the routing, modulation format, and spectrum assignment (RMLSA) problem for widearea elastic optical networks. Our main goal is to maximize successful connection requests in widearea networks while choosing modulation formats with the highest efficiency possible. Consequently, our technique uses an adaptive biterrorrate (BER) threshold to achieve communication with the best QoT in the most efficient manner, using the strictest BER value and the modulation format with the smallest bandwidth possible. Additionally, the proposed algorithm relies on 3R regeneration devices to enable longdistances communications if transparent communication cannot be achieved. We assessed our method through simulations for various network conditions, such as the number of regenerators per node, traffic load per user, and BER threshold values. In a scenario without regenerators, the BERAdaptive algorithm performs similarly to the most relaxed fixed BER threshold studied in blocking probability. However, it ensures a higher QoT to most of the connection requests. The proposed algorithm thrives with the use of regenerators, showing the best performance among the studied solutions, enabling longdistance communications with a high QoT and low blocking probability.

Aylwin, R., JerezHanckes, C., Schwab, C., & Zech, J. (2020). Domain Uncertainty Quantification in Computational Electromagnetics. SIAMASA J. Uncertain. Quantif., 8(1), 301–341.
Abstract: We study the numerical approximation of timeharmonic, electromagnetic fields inside a lossy cavity of uncertain geometry. Key assumptions are a possibly highdimensional parametrization of the uncertain geometry along with a suitable transformation to a fixed, nominal domain. This uncertainty parametrization results in families of countably parametric, Maxwelllike cavity problems that are posed in a single domain, with inhomogeneous coefficients that possess finite, possibly low spatial regularity, but exhibit holomorphic parametric dependence in the differential operator. Our computational scheme is composed of a sparse grid interpolation in the highdimensional parameter domain and an Hcurl conforming edge element discretization of the parametric problem in the nominal domain. As a steppingstone in the analysis, we derive a novel Strangtype lemma for Maxwelllike problems in the nominal domain, which is of independent interest. Moreover, we accommodate arbitrary small Sobolev regularity of the electric field and also cover uncertain isotropic constitutive or material laws. The shape holomorphy and edgeelement consistency error analysis for the nominal problem are shown to imply convergence rates for multilevel Monte Carlo and for quasiMonte Carlo integration, as well as sparse grid approximations, in uncertainty quantification for computational electromagnetics. They also imply expression rate estimates for deep ReLU networks of shapetosolution maps in this setting. Finally, our computational experiments confirm the presented theoretical results.

Soto, V., Saez, E., & MagnaVerdugo, C. (2020). Numerical modeling of 3D sitecity effects including partially embedded buildings using spectral element methods. Application to the case of Viña del Mar city, Chile. Eng. Struct., 223, 111188.
Abstract: In recent years, seismic wave propagation analyses have become a powerful tool to evaluate the site effects in a given region. Among several approaches, Spectral Element Method (SEM) has been widely used with that purpose because its flexibility and computational efficiency. In addition to other effects than basin shape, material nonlinearity and heterogeneity, the multiple interactions between the soil and structures, denominated sitecity effects (SCI), can play a crucial role in densely populated areas. There are many options to model this kind of interaction, especially if the buildings are partially embedded on the soil. This paper evaluates the importance of the proper SCI modeling against more standard uncoupled approaches, focusing on the local interaction between the soil and a group of buildings including inelastic soil behavior. We focus our work on the case of downtown Viña del Mar, a touristic coastal city of central Chile, where the observation of a reiterated distribution of damage in reinforced concrete buildings during two major earthquakes has motivated numerous studies. For that purpose, a realistic 3D numerical model of the area is created, considering the existing buildings and using microvibration as a main calibration tool. The opensource code SPEED was used to perform the wave propagation simulation, which combines the spectral element method with a discontinuous Galerkin approach. A geophysical study was conducted to estimate the model parameters, shear modulus degradation and damping curves are extracted from laboratory tests to account for the nonlinearity of the soil. In general, the results indicate that the inclusion of the SCI is beneficial to the structure's response in most cases, and that SCI modeling needs to considerate the level of embedment to obtain more precise results. Indeed, in buildings of 12 or more stories, the response would not be affected by the level of embedding of the base and the inclusion of sitecity effects is beneficial, while for buildings lower than 5 stories, the total embedment of the base generates a significant decrease of the response.

EscapilInchauspe, P., & JerezHanckes, C. (2020). Helmholtz Scattering by Random Domains: FirstOrder Sparse Boundary Elements Approximation. SIAM J. Sci. Comput., 42(5), A2561–A2592.
Abstract: We consider the numerical solution of timeharmonic acoustic scattering by obstacles with uncertain geometries for Dirichlet, Neumann, impedance, and transmission boundary conditions. In particular, we aim to quantify diffracted fields originated by small stochastic perturbations of a given relatively smooth nominal shape. Using firstorder shape Taylor expansions, we derive tensor deterministic firstkind boundary integral equations for the statistical moments of the scattering problems considered. These are then approximated by sparse tensor Galerkin discretizations via the combination technique [M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, P. de Groen and P. Beauwens, eds., Elsevier, Amsterdam, 1992, pp. 263281; H. Harbrecht, M. Peters, and M. Siebenmorgen, J. Comput. Phys., 252 (2013), pp. 128141]. We supply extensive numerical experiments confirming the predicted error convergence rates with polylogarithmic growth in the number of degrees of freedom and accuracy in approximation of the moments. Moreover, we discuss implementation details such as preconditioning to finally point out further research avenues.

Sanchez, R., & Villena, M. (2020). Comparative evaluation of wearable devices for measuring elevation gain in mountain physical activities. Proc. Inst. Mech. Eng. Part PJ. Sport. Eng. Technol., 234(4), 312–319.
Abstract: The aim of this article is to examine the validity of elevation gain measures in mountain activities, such as hiking and mountain running, using different wearable devices and postprocessing procedures. In particular, a total of 202 efforts were recorded and evaluated using three standard devices: GPS watch, GPS watch with barometric altimeter, and smartphone. A benchmark was based on orthorectified aerial photogrammetric survey conducted by the Chilean Air Force. All devices presented considerable elevation gain measuring errors, where the barometric device consistently overestimated elevation gain, while the GPS devices consistently underestimated elevation gain. The incorporation of secondary information in the postprocessing can substantially improve the elevation gain measuring accuracy independently of the device and altitude measuring technology, reducing the error from 5% to 1%. These results could help coaches and athletes correct elevation gain estimations using the proposed technique, which would serve as better estimates of physical workload in mountain physical activities.
Keywords: Mountain running; physical workload; altitude; measuring; validity; GPS; barometric device

Barrera, J., Carrasco, R. A., & Moreno, E. (2020). Realtime fleet management decision support system with security constraints. TOP, 28(3), 728–748.
Abstract: Intelligent transportation, and in particular, fleet management, has been a forefront concern for a plethora of industries. This statement is especially true for the production of commodities, where transportation represents a central element for operational continuity. Additionally, in many industries, and in particular those with hazardous environments, fleet control must satisfy a wide range of security restrictions to ensure that risks are kept at bay and accidents are minimum. Furthermore, in these environments, any decision support tool must cope with noisy and incomplete data and give recommendations every few minutes. In this work, a fast and efficient decision support tool is presented to help fleet managers oversee and control ore trucks, in a mining setting. The main objective of this system is to help managers avoid interactions between ore trucks and personnel buses, one of the most critical security constraints in our case study, keeping a minimum security distance between the two at all times. Furthermore, additional algorithms are developed and implemented, so that this approach can work with reallife noisy GPS data. Through the use of historical data, the performance of this decision support system is studied, validating that it works under the reallife conditions presented by the company. The experimental results show that the proposed approach improved truck and road utilization significantly while allowing the fleet manager to control the security distance required by their procedures.

Munoz, M., RoblesNavarro, A., Fuentealba, P., & Cardenas, C. (2020). Predicting Deprotonation Sites Using Alchemical Derivatives. J. Phys. Chem. A, 124(19), 3754–3760.
Abstract: An alchemical transformation is any process, physical or fictitious, that connects two points in the chemical space. A particularly important transformation is the vanishing of a proton, whose energy can be linked to the proton dissociation enthalpy of acids. In this work we assess the reliability of alchemical derivatives in predicting the proton dissociation enthalpy of a diverse series of mono and polyprotic molecules. Alchemical derivatives perform remarkably well in ranking the proton affinity of all molecules. Additionally, alchemical derivatives could be use also as a predictive tool because their predictions correlate quite well with calculations based on energy differences and experimental values. Although secondorder alchemical derivatives underestimate the dissociation enthalpy, the deviation seems to be almost constant. This makes alchemical derivatives extremely accurate to evaluate the difference in proton affinity between two acid sites of polyprotic molecule. Finally, we show that the reason for the underestimation of the dissociation enthalpy is most likely the contribution of higherorder derivatives.

Josserand, C., Pomeau, Y., & Rica, S. (2020). Finitetime localized singularities as a mechanism for turbulent dissipation. Phys. Rev. Fluids, 5(5), 15 pp.
Abstract: The nature of the fluctuations of the dissipation rate in fluid turbulence is still under debate. One reason may be that the observed fluctuations are strong events of dissipation, which reveal the trace of spatiotemporal singularities of the Euler equations, which are the zero viscosity limit of ordinary incompressible fluids. Viscosity regularizes these hypothetical singularities, resulting in a chaotic fluctuating state in which the strong events appear randomly in space and time, making the energy dissipation highly fluctuating. Yet, to date, it is not known if smooth initial conditions of the Euler equations with finite energy do or do not blow up in finite time. We overcome this central difficulty by providing a scenario for singularitymediated turbulence based on the selffocusing nonlinear Schrodinger equation. It avoids the intrinsic difficulty of Euler equations since it is well known that solutions of this NLS equation with smooth initial conditions do blow up in finite time. When adding viscosity, the model shows (i) that dissipation takes place near the singularities only, (ii) that such intense events are random in space and time, (iii) that the mean dissipation rate is almost constant as the viscosity varies, and (iv) the observation of an ObukhovKolmogorov spectrum with a powerlaw dependence together with an intermittent behavior using structure function correlations, in close correspondence with the one measured in fluid turbulence.

Lagos, F., Schreiber, M. R., Parsons, S. G., Zurlo, A., Mesa, D., Gansicke, B. T., et al. (2020). The White Dwarf Binary Pathways Survey III. Contamination from hierarchical triples containing a white dwarf. Mon. Not. Roy. Astron. Soc., 494(1), 915–922.
Abstract: The White Dwarf Binary Pathways Survey aims at increasing the number of known detached A, F, G, and K mainsequence stars in close orbits with white dwarf companions (WD+AFGK binaries) to refine our understanding about compact binary evolution and the nature of Supernova Ia progenitors. These close WD+AFGK binary stars are expected to form through common envelope evolution, in which tidal forces tend to circularize the orbit. However, some of the identified WD+AFGK binary candidates show eccentric orbits, indicating that these systems are either formed through a different mechanism or perhaps they are not close WD+AFGK binaries. We observed one of these eccentric WD+AFGK binaries with SPHERE and find that the system TYC 72189341 is in fact a triple system where the WD is a distant companion. The inner binary likely consists of the Gtype star plus an unseen lowmass companion in an eccentric orbit. Based on this finding, we estimate the fraction of triple systems that could contaminate the WD+AFGK sample. We find that less than 15 per cent of our targets with orbital periods shorter than 100 d might be hierarchical triples.

Fernandez, M., Munoz, F. D., & Moreno, R. (2020). Analysis of imperfect competition in natural gas supply contracts for electric power generation: A closedloop approach. Energy Econ., 87, 15 pp.
Abstract: The supply of natural gas is generally based on contracts that are signed prior to the use of this fuel for power generation. Scarcity of natural gas in systems where a share of electricity demand is supplied with gas turbines does not necessarily imply demand rationing, because most gas turbines can still operate with diesel when natural gas is not available. However, scarcity conditions can lead to electricity price spikes, with welfare effects for consumers and generation firms. We develop a closedloop equilibrium model to evaluate if generation firms have incentives to contract or import the sociallyoptimal volumes of natural gas to generate electricity. We consider a perfectlycompetitive electricity market, where all firms act as pricetakers in the short term, but assume that only a small number of firms own gas turbines and procure natural gas from, for instance, foreign suppliers in liquefied form. We illustrate an application of our model using a network reduction of the electric power system in Chile, considering two strategic firms that make annual decisions about natural gas imports in discrete quantities. We also assume that strategic firms compete in the electricity market with a set of competitive firms do not make strategic decisions about natural gas imports (i.e., a competitive fringe). Our results indicate that strategic firms could have incentives to sign natural gas contracts for volumes that are much lower than the sociallyoptimal ones, which leads to supernormal profits for these firms in the electricity market. Yet, this effect is rather sensitive to the price of natural gas. A high price of natural gas eliminates the incentives of generation firms to exercise market power through natural gas contracts. (C) 2020 Elsevier B.V. All rights reserved.

Kamal, C., Gravelle, S., & Botto, L. (2020). Hydrodynamic slip can align thin nanoplatelets in shear flow. Nat. Commun., 11(1), 10 pp.
Abstract: The largescale processing of nanomaterials such as graphene and MoS2 relies on understanding the flow behaviour of nanometricallythin platelets suspended in liquids. Here we show, by combining nonequilibrium molecular dynamics and continuum simulations, that rigid nanoplatelets can attain a stable orientation for sufficiently strong flows. Such a stable orientation is in contradiction with the rotational motion predicted by classical colloidal hydrodynamics. This surprising effect is due to hydrodynamic slip at the liquidsolid interface and occurs when the slip length is larger than the platelet thickness; a slip length of a few nanometers may be sufficient to observe alignment. The predictions we developed by examining pure and surfacemodified graphene is applicable to different solvent/2D material combinations. The emergence of a fixed orientation in a direction nearly parallel to the flow implies a slipdependent change in several macroscopic transport properties, with potential impact on applications ranging from functional inks to nanocomposites. Current theories predict that a platelike particle rotates continuously in a shear flow. Kamal et al. instead show that even nanometric hydrodynamic slip may induce a thin platelike particle to adopt a stable orientation, and discuss implications of this effect for flow processing of 2D nanomaterials.

Goles, E., Tsompanas, M. A., Adamatzky, A., Tegelaar, M., Wosten, H. A. B., & Martinez, G. J. (2020). Computational universality of fungal sandpile automata. Phys. Lett. A, 384(22), 8 pp.
Abstract: Hyphae within the mycelia of the ascomycetous fungi are compartmentalised by septa. Each septum has a pore that allows for intercompartmental and interhyphal streaming of cytosol and even organelles. The compartments, however, have special organelles, Woronin bodies, that can plug the pores. When the pores are blocked, no flow of cytoplasm takes place. Inspired by the controllable compartmentalisation within the mycelium of the ascomycetous fungi we designed twodimensional fungal automata. A fungal automaton is a cellular automaton where communication between neighbouring cells can be blocked on demand. We demonstrate computational universality of the fungal automata by implementing sandpile cellular automata circuits there. We reduce the Monotone Circuit Value Problem to the Fungal Automaton Prediction Problem. We construct families of wires, crossovers and gates to prove that the fungal automata are Pcomplete. (C) 2020 Elsevier B.V. All rights reserved.
Keywords: Fungi; Sandpile automata; Computational universality

Diaz, C., Belmonte, M., Campos, J. L., Franchi, O., Faundez, M., Vidal, G., et al. (2020). Limits of the anammox process in granular systems to remove nitrogen at low temperature and nitrogen concentration. Process Saf. Environ. Protect., 138, 349–355.
Abstract: When partial nitritationanammox (PNAMX) processes are applied to treat the mainstream in wastewater treatment plants (WWTPs), it is difficult to fulfil the total nitrogen (TN) quality requirements established by the European Union (<10g TN/m(3)). The operation of the anammox process was evaluated here in a continuous stirred tank reactor operated at 15 degrees C and fed with concentrations of 50 g TN/m(3) (1.30 +/ 0.23 g NO2 N/g NH4+N). Two different aspects were identified as crucial, limiting nitrogen removal efficiency. On the one hand, the oxygen transferred from the air in contact with the mixed liquor surface favoured the nitrite oxidation to nitrate (up to 75 %) and this nitrate, in addition to the amount produced from the anammox reaction itself, worsened the effluent quality. On the other hand, the mass transfer of ammonium and nitrite to be converted inside the anammox granules involves relatively large values of apparent affinity constants (k(NH4+app) : 0.50 g NH4+N/m(3) ; k(NO2app) 0.17 g NO2N/m(3)) that favour the presence of these nitrogen compounds in the produced effluent. The careful isolation of the reactor from air seeping and the fixation of right hydraulic and solids retention times are expected to help the maintenance of stability and effluent quality. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Keywords: Anammox; Dissolved oxygen; Granular biomass; Nitrogen; SRT; Temperature

Canessa, E., & Chaigneau, S. E. (2020). Mathematical regularities of data from the property listing task. J. Math. Psychol., 97, 19 pp.
Abstract: To study linguistically coded concepts, researchers often resort to the Property Listing Task (PLT). In a PLT, participants are asked to list properties that describe a concept (e.g., for DOG, subjects may list “is a pet”, “has four legs”, etc.), which are then coded into property types (i.e., superficially dissimilar properties such as “has four legs” and “is a quadruped” may be coded as “four legs”). When the PLT is done for many concepts, researchers obtain Conceptual Properties Norms (CPNs), which are used to study semantic content and as a source of control variables. Though the PLT and CPNs are widely used across psychology, there is a lack of a formal model of the PLT, which would provide better analysis tools. Particularly, nobody has attempted analyzing the PLT's listing process. Thus, in the current work we develop a mathematical description of the PLT. Our analyses indicate that several regularities should be found in the observable data obtained from a PLT. Using data from three different CPNs (from 3 countries and 2 different languages), we show that these regularities do in fact exist and generalize well across different CPNs. Overall, our results suggest that the description of the regularities found in PLT data may be fruitfully used in the study of concepts. (C) 2020 Elsevier Inc. All rights reserved.

Golovach, P. A., Heggernes, P., Lima, P. T., & Montealegre, P. (2020). Finding connected secluded subgraphs. J. Comput. Syst. Sci., 113, 101–124.
Abstract: Problems related to finding induced subgraphs satisfying given properties form one of the most studied areas within graph algorithms. However, for many applications, it is desirable that the found subgraph has as few connections to the rest of the graph as possible, which gives rise to the SECLUDED PiSUBGRAPH problem. Here, input k is the size of the desired subgraph, and input t is a limit on the number of neighbors this subgraph has in the rest of the graph. This problem has been studied from a parameterized perspective, and unfortunately it turns out to be W[1]hard for many graph properties Pi, even when parameterized by k + t. We show that the situation changes when we are looking for a connected induced subgraph satisfying Pi. In particular, we show that the CONNECTED SECLUDED PiSUBGRAPH problem is FPT when parameterized by just t for many important graph properties Pi. (C) 2020 Elsevier Inc. All rights reserved.
