Home  << 1 2 3 4 5 6 >> 
Jordan, A., Brahm, R., Espinoza, N., Henning, T., Jones, M. I., Kossakowski, D., et al. (2020). TOI677b: A Warm Jupiter (P=11.2 days) on an Eccentric Orbit Transiting a Late Ftype Star. Astron. J., 159(4), 10 pp.
Abstract: We report the discovery of TOI677.b, first identified as a candidate in light curves obtained within Sectors 9 and 10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI677.b has a mass of Mp = 1.236(0.067)(+0.069) MJ, a radius of RP = 1.170 +/ 0.03 RJ, and orbits its bright host star (V=.9.8 mag) with an orbital period of 11.23660 +/ 0.00011 d, on an eccentric orbit with e = 0.435 +/ 0.024. The host star has a mass of Mstar = 1.181 +/ 0.058 Mcircle dot, a radius of R. = 1.28(0.03)(+0.03) Rcircle dot, an age of 2.92(0.73)(+0.80) Gyr and solar metallicity, properties consistent with a mainsequence lateF star with Teff = 6295 +/ 77 K. We find evidence in the radial velocity measurements of a secondary longterm signal, which could be due to an outer companion. The TOI677.b system is a wellsuited target for RossiterMclaughlin observations that can constrain migration mechanisms of closein giant planets.

Josserand, C., Pomeau, Y., & Rica, S. (2020). Finitetime localized singularities as a mechanism for turbulent dissipation. Phys. Rev. Fluids, 5(5), 15 pp.
Abstract: The nature of the fluctuations of the dissipation rate in fluid turbulence is still under debate. One reason may be that the observed fluctuations are strong events of dissipation, which reveal the trace of spatiotemporal singularities of the Euler equations, which are the zero viscosity limit of ordinary incompressible fluids. Viscosity regularizes these hypothetical singularities, resulting in a chaotic fluctuating state in which the strong events appear randomly in space and time, making the energy dissipation highly fluctuating. Yet, to date, it is not known if smooth initial conditions of the Euler equations with finite energy do or do not blow up in finite time. We overcome this central difficulty by providing a scenario for singularitymediated turbulence based on the selffocusing nonlinear Schrodinger equation. It avoids the intrinsic difficulty of Euler equations since it is well known that solutions of this NLS equation with smooth initial conditions do blow up in finite time. When adding viscosity, the model shows (i) that dissipation takes place near the singularities only, (ii) that such intense events are random in space and time, (iii) that the mean dissipation rate is almost constant as the viscosity varies, and (iv) the observation of an ObukhovKolmogorov spectrum with a powerlaw dependence together with an intermittent behavior using structure function correlations, in close correspondence with the one measured in fluid turbulence.

Kamal, C., Gravelle, S., & Botto, L. (2020). Hydrodynamic slip can align thin nanoplatelets in shear flow. Nat. Commun., 11(1), 10 pp.
Abstract: The largescale processing of nanomaterials such as graphene and MoS2 relies on understanding the flow behaviour of nanometricallythin platelets suspended in liquids. Here we show, by combining nonequilibrium molecular dynamics and continuum simulations, that rigid nanoplatelets can attain a stable orientation for sufficiently strong flows. Such a stable orientation is in contradiction with the rotational motion predicted by classical colloidal hydrodynamics. This surprising effect is due to hydrodynamic slip at the liquidsolid interface and occurs when the slip length is larger than the platelet thickness; a slip length of a few nanometers may be sufficient to observe alignment. The predictions we developed by examining pure and surfacemodified graphene is applicable to different solvent/2D material combinations. The emergence of a fixed orientation in a direction nearly parallel to the flow implies a slipdependent change in several macroscopic transport properties, with potential impact on applications ranging from functional inks to nanocomposites. Current theories predict that a platelike particle rotates continuously in a shear flow. Kamal et al. instead show that even nanometric hydrodynamic slip may induce a thin platelike particle to adopt a stable orientation, and discuss implications of this effect for flow processing of 2D nanomaterials.

Lagos, F., Schreiber, M. R., Parsons, S. G., Zurlo, A., Mesa, D., Gansicke, B. T., et al. (2020). The White Dwarf Binary Pathways Survey III. Contamination from hierarchical triples containing a white dwarf. Mon. Not. Roy. Astron. Soc., 494(1), 915–922.
Abstract: The White Dwarf Binary Pathways Survey aims at increasing the number of known detached A, F, G, and K mainsequence stars in close orbits with white dwarf companions (WD+AFGK binaries) to refine our understanding about compact binary evolution and the nature of Supernova Ia progenitors. These close WD+AFGK binary stars are expected to form through common envelope evolution, in which tidal forces tend to circularize the orbit. However, some of the identified WD+AFGK binary candidates show eccentric orbits, indicating that these systems are either formed through a different mechanism or perhaps they are not close WD+AFGK binaries. We observed one of these eccentric WD+AFGK binaries with SPHERE and find that the system TYC 72189341 is in fact a triple system where the WD is a distant companion. The inner binary likely consists of the Gtype star plus an unseen lowmass companion in an eccentric orbit. Based on this finding, we estimate the fraction of triple systems that could contaminate the WD+AFGK sample. We find that less than 15 per cent of our targets with orbital periods shorter than 100 d might be hierarchical triples.

Lardone, M. C., Busch, A. S., Santos, J. L., Miranda, P., Eyheramendy, S., Pereira, A., et al. (2020). A Polygenic Risk Score Suggests Shared Genetic Architecture of Voice Break With Early Markers of Pubertal Onset in Boys. J. Clin. Endocrinol. Metab., 105(3), E349–E357.
Abstract: Context: Voice break, as a landmark of advanced male puberty in genomewide association studies (GWAS), has revealed that pubertal timing is a highly polygenic trait. Although voice break is easily recorded in large cohorts, it holds quite low precision as a marker of puberty. In contrast, gonadarche and pubarche are early and clinically welldefined measures of puberty onset. Objective: To determine whether a polygenic risk score (PRS) of alleles that confer risk for voice break associates with age at gonadarche (AAG) and age at pubarche (AAP) in Chilean boys. Experimental Design: Longitudinal study. Subjects and Methods: 401 boys from the Growth and Obesity Chilean Cohort Study (n = 1194; 49.2% boys). Main Outcome Measures: Biannual clinical pubertal staging including orchidometry. AAG and AAP were estimated by censoring methods. Genotyping was performed using the MultiEthnic Global Array (Illumina). Using GWAS summary statistics from the UKBiobank, 29 significant and independent single nucleotide polymorphisms associated with age at voice break were extracted. Individual PRS were computed as the sum of risk alleles weighted by the effect size. Results: The PRS was associated with AAG (beta=0.01, P = 0.04) and AAP (beta=0.185, P = 0.0004). In addition, boys within the 20% highest PRS experienced gonadarche and pubarche 0.55 and 0.67 years later than those in the lowest 20%, respectively (P = 0.013 and P = 0.007). Conclusions: Genetic variants identified in large GWAS on age at VB significantly associate with age at testicular growth and pubic hair development, suggesting that these events share a genetic architecture across ethnically distinct populations.
Keywords: gonadarche; pubarche; polygenic risk score; GWAS; male puberty

Lendl, M., Bouchy, F., Gill, S., Nielsen, L. D., Turner, O., Stassun, K., et al. (2020). TOI222: a singletransit TESS candidate revealed to be a 34d eclipsing binary with CORALIE, EulerCam, and NGTS. Mon. Not. Roy. Astron. Soc., 492(2), 1761–1769.
Abstract: We report the period, eccentricity, and mass determination for the Transiting Exoplanet Survey Satellite (TESS) singletransit event candidate TOI222, which displayed a single 3000 ppm transit in the TESS 2min cadence data from Sector 2. We determine the orbital period via radial velocity measurements (P = 33.9 d), which allowed for groundbased photometric detection of two subsequent transits. Our data show that the companion to TOI222 is a lowmass star, with a radius of 0.18(0.10)(+0.39) Rcircle dot and a mass of 0.23 +/ 0.01 Mcircle dot. This discovery showcases the ability to efficiently discover longperiod systems from TESS singletransit events using a combination of radial velocity monitoring coupled with highprecision groundbased photometry.

Mancini, L., Sarkis, P., Henning, T., Bakos, G. A., Bayliss, D., Bento, J., et al. (2020). The highly inflated giant planet WASP174b. Astron. Astrophys., 633, 12 pp.
Abstract: Context. The transiting exoplanetary system WASP174 was reported to be composed by a mainsequence F star (V = 11.8 mag) and a giant planet, WASP174b (orbital period Porb = 4.23 days). However only an upper limit was placed on the planet mass (<1.3 MJup), and a highly uncertain planetary radius (0.71.7 RJup) was determined.Aims. We aim to better characterise both the star and the planet and precisely measure their orbital and physical parameters.Methods. In order to constrain the mass of the planet, we obtained new measurements of the radial velocity of the star and joined them with those from the discovery paper. Photometric data from the HATSouth survey and new multiband, highquality (precision reached up to 0.37 mmag) photometric followup observations of transit events were acquired and analysed for getting accurate photometric parameters. We fit the model to all the observations, including data from the TESS space telescope, in two different modes: incorporating the stellar isochrones into the fit, and using an empirical method to get the stellar parameters. The two modes resulted to be consistent with each other to within 2<sigma>.Results. We confirm the grazing nature of the WASP174b transits with a confidence level greater than 5 sigma, which is also corroborated by simultaneously observing the transit through four optical bands and noting how the transit depth changes due to the limbdarkening effect. We estimate that approximate to 76% of the disk of the planet actually eclipses the parent star at midtransit of its transit events. We find that WASP174b is a highlyinflated hot giant planet with a mass of Mp = 0.330 +/ 0.091 MJup and a radius of Rp = 1.435 +/ 0.050 RJup, and is therefore a good target for transmissionspectroscopy observations. With a density of rho (p) = 0.135 +/ 0.042 g cm(3), it is amongst the lowestdensity planets ever discovered with precisely measured mass and radius.

Mejia, G., & Pereira, J. (2020). Multiobjective scheduling algorithm for flexible manufacturing systems with Petri nets. J. Manuf. Syst., 54, 272–284.
Abstract: In this work, we focus on general multiobjective scheduling problems that can be modeled using a Petri net framework. Due to their generality, Petri nets are a useful abstraction that captures multiple characteristics of reallife processes. To provide a general solution procedure for the abstraction, we propose three alternative approaches using an indirect scheme to represent the solution: (1) a genetic algorithm that combines two objectives through a weighted fitness function, (2) a non dominated sorting genetic algorithm (NSGAII) that explicitly addresses the multiobjective nature of the problem and (3) a multiobjective local search approach that simultaneously explores multiple candidate solutions. These algorithms are tested in an extensive computational experiment showing the applicability of this general framework to obtain quality solutions.
Keywords: Machine scheduling; Multiobjective optimization; Petri nets

Moffat, R., Parra, P., & Carrasco, M. (2020). Monitoring a 28.5 m High Anchored Pile Wall in Gravel Using Various Methods. Sensors, 20(1), 14 pp.
Abstract: Horizontal displacements of a multipleanchor pile wall in a 28.5 m deep excavation using the topdown construction method have been monitored using optical fiber (Brillouin optical timedomain reflectometry (BOTDR)), strain gauges, inclinometers, and a topographic survey. This work presents a comparison between these different techniques to measure horizontal displacements in the pile at several stages of the soil excavation process. It was observed that displacements can be separated into two components: Rigid body motion and pile flexural deformation. Measurements using optical fiber and inclinometers are considered the most adequate and easy to install. A numerical model allows us to evaluate the influence of earth pressure on the estimated horizontal displacements. It is shown that using soil pressure on the wall given by p = 0.65Ka gamma h, on a simplified modeled wall, provides a close deduction of horizontal displacements compared to observed values on the field.
Keywords: deep excavation; anchored wall; monitoring; pile displacement

Mondschein, S., Yankovic, N., & Matus, O. (2020). The Challenges of Administering a New Treatment: The Case of Direct Acting Antivirals for Hepatitis C Virus. Public Health, to appear. 
MontalvaMedel, M., Rica, S., & Urbina, F. (2020). Phase space classification of an Ising cellular automaton: The Q2R model. Chaos Solitons Fractals, 133, 14 pp.
Abstract: An exact classification of the different dynamical behaviors that exhibits the phase space of a reversible and conservative cellular automaton, the socalled Q2R model, is shown in this paper. Q2R is a cellular automaton which is a dynamical variation of the Ising model in statistical physics and whose space of configurations grows exponentially with the system size. As a consequence of the intrinsic reversibility of the model, the phase space is composed only by configurations that belong to a fixed point or a cycle. In this work, we classify them in four types accordingly to well differentiated topological characteristics. Three of them which we call of type SI, SII, and SIII share a symmetry property, while the fourth, which we call of type AS does not. Specifically, we prove that any configuration of Q2R belongs to one of the four previous types of cycles. Moreover, at a combinatorial level, we can determine the number of cycles for some small periods which are almost always present in the Q2R. Finally, we provide a general overview of the resulting decomposition of the arbitrary size Q2R phase space and, in addition, we realize an exhaustive study of a small Ising system (4 x 4) which is thoroughly analyzed under this new framework, and where simple mathematical tools are introduced in order to have a more direct understanding of the Q2R dynamics and to rediscover known properties like the energy conservation. (C) 2020 Elsevier Ltd. All rights reserved.

Montealegre, R., PerezSalazar, S., Rapaport, I., & Todinca, I. (2020). Graph reconstruction in the congested clique. J. Comput. Syst. Sci., 113, 1–17.
Abstract: In this paper we study the reconstruction problem in the congested clique model. Given a class of graphs g, the problem is defined as follows: if G is not an element of g, then every node must reject; if G is an element of g, then every node must end up knowing all the edges of G. The cost of an algorithm is the total number of bits received by any node through one link. It is not difficult to see that the cost of any algorithm that solves this problem is Omega(log vertical bar g(n)vertical bar/n), where g(n) is the subclass of all nnode labeled graphs in g. We prove that the lower bound is tight and that it is possible to achieve it with only 2 rounds. (C) 2020 Elsevier Inc. All rights reserved.

Moreno, S., Pereira, J., & Yushimito, W. (2020). A hybrid Kmeans and integer programming method for commercial territory design: a case study in meat distribution. Ann. Oper. Res., 286(12), 87–117.
Abstract: The objective of territorial design for a distribution company is the definition of geographic areas that group customers. These geographic areas, usually called districts or territories, should comply with operational rules while maximizing potential sales and minimizing incurred costs. Consequently, territorial design can be seen as a clustering problem in which clients are geographically grouped according to certain criteria which usually vary according to specific objectives and requirements (e.g. costs, delivery times, workload, number of clients, etc.). In this work, we provide a novel hybrid approach for territorial design by means of combining a Kmeansbased approach for clustering construction with an optimization framework. The Kmeans approach incorporates the novelty of using tour length approximation techniques to satisfy the conditions of a pork and poultry distributor based in the region of Valparaiso in Chile. The resulting method proves to be robust in the experiments performed, and the Valparaiso case study shows significant savings when compared to the original solution used by the company.
Keywords: Territorial design; Clustering; Kmeans; Integer programming; Case study

Munoz, M., RoblesNavarro, A., Fuentealba, P., & Cardenas, C. (2020). Predicting Deprotonation Sites Using Alchemical Derivatives. J. Phys. Chem. A, 124(19), 3754–3760.
Abstract: An alchemical transformation is any process, physical or fictitious, that connects two points in the chemical space. A particularly important transformation is the vanishing of a proton, whose energy can be linked to the proton dissociation enthalpy of acids. In this work we assess the reliability of alchemical derivatives in predicting the proton dissociation enthalpy of a diverse series of mono and polyprotic molecules. Alchemical derivatives perform remarkably well in ranking the proton affinity of all molecules. Additionally, alchemical derivatives could be use also as a predictive tool because their predictions correlate quite well with calculations based on energy differences and experimental values. Although secondorder alchemical derivatives underestimate the dissociation enthalpy, the deviation seems to be almost constant. This makes alchemical derivatives extremely accurate to evaluate the difference in proton affinity between two acid sites of polyprotic molecule. Finally, we show that the reason for the underestimation of the dissociation enthalpy is most likely the contribution of higherorder derivatives.

Nielsen, L. D., Brahm, R., Bouchy, F., Espinoza, N., Turner, O., Rappaport, S., et al. (2020). Three shortperiod Jupiters from TESS: HIP 65Ab, TOI157b, and TOI169b. Astron. Astrophys., 639, 17 pp.
Abstract: We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI129, TIC201248411) is an ultrashortperiod Jupiter orbiting a bright (V = 11.1 mag) K4dwarf every 0.98 days. It is a massive 3.213 +/ 0.078 MJ planet in a grazing transit configuration with an impact parameter of b = 1.17(0.08)(+0.10) b=1.170.08+0.10 . As a result the radius is poorly constrained, 2.03(0.49)(+0.61)R(J) 2.030.49+0.61 RJ . The planet's distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q(s)(') = 10(7) – 10(9) Qs ' =107109 . We performed a full phasecurve analysis of the TESS data and detected both illumination and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 +/ 0.13 MJ and a radius of 1.29 +/ 0.02 RJ. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI157 an interesting system, as the host star is an evolved G9 subgiant star (V = 12.7). TOI169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 Gtype star. It has a mass of 0.79 +/ 0.06 MJ and a radius of 1.09(0.05)(+0.08)R(J) 1.090.05+0.08<mml:msub>RJ . Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24.

NorambuenaContreras, J., ArteagaPerez, L. E., GuadarramaLezama, A. Y., Briones, R., Vivanco, J. F., & GonzalezTorre, I. (2020). Microencapsulated BioBased Rejuvenators for the SelfHealing of Bituminous Materials. Materials, 13(6), 16 pp.
Abstract: Asphalt selfhealing by encapsulated rejuvenating agents is considered a revolutionary technology for the autonomic crackhealing of aged asphalt pavements. This paper aims to explore the use of BioOil (BO) obtained from liquefied agricultural biomass waste as a biobased encapsulated rejuvenating agent for selfhealing of bituminous materials. Novel BO capsules were synthesized using two simple dripping methods through dropping funnel and syringe pump devices, where the BO agent was microencapsulated by external ionic gelation in a biopolymer matrix of sodium alginate. Size, surface aspect, and elemental composition of the BO capsules were characterized by optical and scanning electron microscopy and energydispersive Xray spectroscopy. Thermal stability and chemical properties of BO capsules and their components were assessed through thermogravimetric analysis (TGADTG) and FourierTransform Infrared spectroscopy (FTIRATR). The mechanical behavior of the capsules was evaluated by compressive and lowload microindentation tests. The selfhealing efficiency over time of BO as a rejuvenating agent in cracked bitumen samples was quantified by fluorescence microscopy. Main results showed that the BO capsules presented an adequate morphology for the asphalt selfhealing application, with good thermal stability and physicalchemical properties. It was also proven that the BO can diffuse in the bitumen reducing the viscosity and consequently selfhealing the open microcracks.

O'Ryan, R., Nasirov, S., & AlvarezEspinosa, A. (2020). Renewable energy expansion in the Chilean power market: A dynamic general equilibrium modeling approach to determine CO2 emission baselines. J. Clean Prod., 247, 11 pp.
Abstract: Over the last decade, a high dependency on carbonintensive fuels in the Chilean power sector has led to environmental concerns, particularly regarding rapid growth in CO2 emissions. More recently, the power sector has experienced significant structural changes with a rapid expansion of renewables in the energy matrix, and this trend is expected to cause significant variations in future CO2emission baseline scenarios. To investigate the economywide impact of renewable energy expansions in Chile's energy mix, this research, based on a Computable General Equilibrium (CGE) model, examines different CO2 emission baseline scenarios. However, because traditional CGE modeling approaches cannot capture the impact of a sector's recent structural changes, we present a stepbystep approach to incorporate different energy matrices from an external engineering bottomup model into the CGE model. The results indicate that the Business as Usual (BAU) scenario, in which structural changes are not considered, significantly overstates expected emissions. Conversely, considering structural changes in our CGE model shows Chile advancing towards its declared Nationally Determined Contribution (NDC) to reduce greenhouse gas emissions. Furthermore, the methodology implemented in the study has the advantage of being a simple integrated approach that is coherent with current modeling capacities in many developing contexts. (C) 2019 Elsevier Ltd. All rights reserved.
Keywords: CGE model; Renewable energy; CO2 emissions; Chile

PabonPereira, C. P., Hamelers, H. V. M., Matilla, I., & van Lier, J. B. (2020). New Insights on the Estimation of the Anaerobic Biodegradability of Plant Material: Identifying Valuable Plants for Sustainable Energy Production. Processes, 8(7), 23 pp.
Abstract: Based on fifteen European plant species, a statistical model for the estimation of the anaerobic biodegradability of plant material was developed. We show that this new approach represents an accurate and costeffective method to identify valuable energy plants for sustainable energy production. In particular, anaerobic biodegradability (Bo) of lignocellulosic material was empirically found to be related to the amount of cellulose plus lignin, as analytically assessed by the van Soest method, i.e., the acid detergent fiber (ADF) value. Apart from being theoretically meaningful, the ADFbased empirical model requires the least effort compared to the other four proposed conceptual models proposed, as individual fractions of cellulose, hemicellulose, and lignin do not need to be assessed, which also enhances the predictive accuracy of the model's estimation. The model's results showed great predictability power, allowing us to identify interesting crops for sustainable crop rotations. Finally, the model was used to predictB(o)of 114 European plant samples that had been previously characterized by means of the van Soest method.

Parra, P. F., & Moehle, J. P. (2020). Effects of strain gradients in the onset of global buckling in slender walls due to earthquake loading. Bull. Earthq. Eng., 18(7), 3205–3221.
Abstract: Global buckling of slender walls, reported only in a few laboratory tests before 2010, became a critical issue in design of reinforced concrete buildings after it was observed following the 2010 Mw 8.8 Chile earthquake and the 2011 Mw 6.3 New Zealand earthquake. Researchers have proposed theoretical buckling models based on prismatic columns subjected to uniform tension/compression cycles, where the key parameters are slenderness ratio, number of curtains of reinforcement, and maximum tensile strain before buckling during load reversal. These models have shown sufficient accuracy in comparison with laboratory tests on columns under such loading conditions. However, buckling in walls is more complex because of variation of strains through the wall depth and variation of moment along the wall height. Nonlinear finite elements are used to evaluate the effects of these more complex loadings on buckling of wall boundary elements. Analyses showed that the maximum tensile strain (averaged over the wall outofplane unsupported height) required to buckle the wall during load reversal does not depend on the moment variation along the wall height. Moreover, for typical wall lengths, the wall boundary behaves like an isolated column subjected to axial force cycles, with minimal apparent bracing provided by the wall web. This allows to analyze a broad range of practical cases for buckling susceptibility using simplified approaches based on buckling models of axially loaded columns.
Keywords: Walls; Global buckling; Reinforced concrete; Earthquake

Pedrouso, A., Tocco, G., val del Rio, A., Carucci, A., Morales, N., Campos, J. L., et al. (2020). Digested blackwater treatment in a partial nitritationanammox reactor under repeated starvation and reactivation periods. J. Clean Prod., 244, 9 pp.
Abstract: Wastewater sourceseparation and onsite treatment systems face severe problems in wastewater availability. Therefore, the effect of repeated shortterm starvation and reactivation periods on a partial nitritationanammox (PN/AMX) based processes were assessed treating digested blackwater at room temperature. Two sequencing batch reactors (SBR) were operated, one of them during 24 h/day the whole week (SBRC, which served as control) and the other with repeated starvation/reactivation periods during the nights and the weekends (SBRD), using simulated blackwater (300 mg N/L and 200 mg COD/L) as substrate. Results showed no remarkable differences in overall processes performance between both reactors, achieving total nitrogen removal efficiencies (NRE) around 90%. Furthermore, no significant variations were measured in specific activities, except for the aerobic heterotrophic one that was lower in SBRD, presumably due to the exposure to anoxic conditions. Then, the technical feasibility of applying the PN/AMX system to treat real blackwater produced in an office building during working hours was successfully proved in a third reactor (SBRR), with the same starvation/reactivation periods tested in SBRD. Despite the low temperature, ranging from 14 to 21 degrees C, total NRE up to 95% and total nitrogen concentration in the effluent lower than 10 mg N/L were achieved. Moreover, the PN/AMX process performance was immediately recovered after a long starvation period of 15 days (simulating holidays). Results proved for the first time the feasibility and longterm stability (100 days) of applying the PN/AMX processes for the treatment (and potential reuse) of blackwater in a decentralized system where wastewater is not always available. (C) 2019 Elsevier Ltd. All rights reserved.
