|
Abisha, M., Priya, R. K., Arunachalam, K. P., Avudaiappan, S., Flores, E. I. S., & Parra, P. F. (2023). Biodegradable Green Composites: Effects of Potassium Permanganate (KMnO4) Treatment on Thermal, Mechanical, and Morphological Behavior of Butea Parviflora (BP) Fibers. Polymers, 15(9), 2197.
Abstract: This study emphasizes the importance of utilizing biodegradable material Butea parviflora (BP) fiber for sustainable solutions. BP fiber offers numerous ecological benefits, such as being lightweight, biodegradable, and affordable to recycle. The study examines the effects of potassium permanganate (KMnO4) treatment on BP fiber and analyzes its physical and chemical behavior using various methods, including X-ray Diffraction (XRD) analysis, tensile testing, thermogravimetric analysis, thermal conductivity, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopic (FTIR) analysis. The results demonstrate that BP fiber possesses low density (1.40 g/cc) and high cellulose content (59.4%), which fosters compatibility between the matrix and resin. XRD analysis indicates a high crystallinity index (83.47%) and crystallite size (6.4 nm), showcasing exceptional crystalline behavior. Treated fibers exhibit improved tensile strength (198 MPa) and Young's modulus (4.40 GPa) compared to untreated fibers (tensile strength-92 MPa, tensile modulus-2.16 GPa). The Tg-DTA thermograms reveal the fiber's thermal resistance up to 240 degrees C with a kinetic activation energy between 62.80-63.46 KJ/mol. Additionally, the lowered thermal conductivity (K) from Lee's disc experiment suggests that BP fiber could be used in insulation applications. SEM photographic results display effective surface roughness for composite making, and FTIR studies reveal vibrational variations of cellulosic functional groups, which correlates with increased cellulosic behavior. Overall, the study affirms the potential of BP fiber as a reinforcing material for composite-making while emphasizing the importance of utilizing biodegradable materials for sustainability.
|
|
|
Agostini, C. A., Perticara, M., & Selman, J. (2023). Tackling Vulnerable Households through a Working Tax Credit Scheme: A Feasible Alternative to Cash Transfers. Hacienda Publica Espanola, 245(SI), 119–155.
Abstract: Conditional Cash Transfer Programs (CCTs) have been extremely popular strategies to fight poverty in developing countries for the last three decades. Although these programs can be effective to improve the welfare of the poor in the short run and even to guarantee basic health care and education services, they can also discourage employment and reduce formality rates. Furthermore, they can create welfare dependence and prevent the generation of autonomous income. Many developed countries have been using the income tax system not only to redistribute income but also to implement social policies. A good example is the Earned Income Tax Credit (EITC) in the United States, which offers a reimbursable credit conditioned on working to low-income individuals. This paper uses Chilean data to empirically analyze the effect that a system such as the EITC would have on poverty and inequality in a developing country. Our polity targets single 18-60 years old women, without a partner, with and without eligible children. The results show that a tax credit could increase employment while reducing poverty and inequality. Additionally, we show that an EITC design might be more cost-effective to increase the income of individuals below the poverty line and to reduce inequality. Given that a program like the EITC mostly benefits those who have a higher chance of seeking and obtaining employment in the formal sector, such policy should be implemented as a complementary tool to other social policy programs aimed at helping individuals out of the informal sector.
|
|
|
Ahrer, E. M., Alderson, L., Batalha, N. M., Batalha, N. E., Bean, J. L., Beatty, T. G., et al. (2023). Identification of carbon dioxide in an exoplanet atmosphere. Nature, Early Access.
Abstract: Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')(1-3), and thus the formation processes of the primary atmospheres of hot gas giants(4-6). It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets(7-9). Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification(10-12). Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme(13,14). The data used in this study span 3.0-5.5micrometres in wavelength and show a prominent CO2 absorption feature at 4.3micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0micrometres that is not reproduced by these models.
|
|
|
Aledo, J. A., Goles, E., Montalva-Medel, M., Montealegre, P., & Valverde, J. C. (2023). Symmetrizable Boolean networks. Inf. Sci., 626, 787–804.
Abstract: In this work, we provide a procedure that allows us to transform certain kinds of deterministic Boolean networks on minterm or maxterm functions into symmetric ones, so inferring that such symmetrizable networks can present only periodic points of periods 1 or 2. In particular, we deal with generalized parallel (or synchronous) dynamical systems (GPDS) over undirected graphs, i. e., discrete parallel dynamical systems over undirected graphs where some of the self-loops may not appear. We also study the class of anti-symmetric GPDS (which are non-symmetrizable), proving that their periodic orbits have period 4. In addition, we introduce a class of non-symmetrizable systems which admit periodic orbits with arbitrary large periods.
|
|
|
Alfaro, J., Rubio, C., & San Martin, M. (2023). Cosmological Fluctuations in Delta Gravity. Universe, 9(7), 315.
Abstract: About 70% of the Universe is Dark Energy, but the physics community still does not know what it is. Delta gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. Previously, we studied the Universe's accelerated expansion, where DG was able to explain the SNe-Ia data successfully. In this work, we computed the cosmological fluctuations in DG that give rise to the CMB through a hydrodynamic approximation. We calculated the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations. This provided the necessary equations to solve the scalar TT power spectrum in a semi-analytical way. These equations are useful for comparing the DG theory with astronomical observations and thus being able to constrain the DG cosmology.
|
|
|
Alvarez, C., Moreno, G., Valenzuela, F., Rivera, J. I., Ebensperger, F., Reszka, P., et al. (2023). Use of an electric heater as an idealized firebrand to determine ignition delay time of Eucalyptus globulus leaves. Fire Saf. J., 141, 103923.
Abstract: The Idealized-Firebrand Ignition Test (I-FIT) protocol was used to evaluate the piloted ignition delay times of fuel beds composed of leaves of Eucalyptus globulus (Labill.). The amount of fuel layer used for evaluation ranged between the fraction volume (������) of 0.03 to 0.07 which are values expected to be found in forest bed fuels. A theoretical model was developed to describe the heating and ignition of the fuel beds, based on the thermal ignition theory. The model, which was originally developed for pine needle beds, considers the penetration of radiation to the porous matrix. The model is able to accurately predict the ignition delay time for different values of ������, but shows a poorer accuracy for the temperature evolution. This is explained by the large variability observed for the Eucalyptus leaves.
|
|
|
Alvarez-Miranda, E., Pereira, J., & Vila, M. (2023). Analysis of the simple assembly line balancing problem complexity. Comput. Oper. Res., 159, 106323.
Abstract: The simple assembly line balancing problem (SALBP) involves the determination of the assignment of elementary assembly operations to the workstations of the assembly line for the manufacture of a final product, with the objective of maximising assembly efficiency. In addition to its practicality, the SALBP can be considered as an extension of the bin packing problem (BPP) to account for the precedence relations between items. These constraints introduce an ordering component to the problem, which increases the complexity of SALBP resolution. However, previous studies indicated that precedence constraints do not play an important role in the capacity of state-of-the-art procedures to solve benchmark instances to optimality. In this study, we analysed the influences of different features of an SALBP instance on the performance of state-of-the-art solution methods for the abovementioned problem. First, we provide an alternative proof of complexity for the SALBP that uses precedence constraints to demonstrate its non-deterministic polynomial time (NP)-complete status, followed by a new set of benchmark instances directed towards an empirical analysis of the different features of SALBP instances. The experimental results revealed that the packing features of the SALBP are a major source of the perceived difficulty for any instance; however, precedence constraints play a role in the performance of these solution procedures. Specifically, the number of precedence constraints plays an important role in the results obtained from state-of-the-art methods. In addition to the analysis, certain issues that were identified in the publicly available implementations of the state-of-the-art method for resolving this problem were addressed in this study.
|
|
|
Alzate-Grisales, J. A., Mora-Rubio, A., García-García, F., Tabares-Soto, R., & de la Iglesia-Vaya, M. (2023). SAM-UNETR: Clinically Significant Prostate CanceSegmentation Using Transfer Learning From Large Model. IEEE Access, 11, 118217–118228.
Abstract: Prostate cancer (PCa) is one of the leading causes of cancer-related mortality among men worldwide. Accurate and efficient segmentation of clinically significant prostate cancer (csPCa) regions from magnetic resonance imaging (MRI) plays a crucial role in diagnosis, treatment planning, and monitoring of the disease, however, this is a challenging task even for the specialized clinicians. This study presents SAM-UNETR, a novel model for segmenting csPCa regions from MRI images. SAM-UNETR combines a transformer-encoder from the Segment Anything Model (SAM), a versatile segmentation model trained on 11 million images, with a residual-convolution decoder inspired by UNETR. The model uses multiple image modalities and applies prostate zone segmentation, normalization, and data augmentation as preprocessing steps. The performance of SAM-UNETR is compared with three other models using the same strategy and preprocessing. The results show that SAM-UNETR achieves superior reliability and accuracy in csPCa segmentation, especially when using transfer learning for the image encoder. This demonstrates the adaptability of large-scale models for different tasks. SAM-UNETR attains a Dice Score of 0.467 and an AUROC of 0.77 for csPCa prediction.
|
|
|
Antico, F. C., Concha-Riedel, J., Valdivia, I., García Herrera, C., & Utrera, A. (2023). The fracture mechanical behavior of the interface between animal fibers, mortar, and earth matrices. A theoretical and experimental approach. Compos. B. Eng., 254, 110568.
Abstract: Theoretical-experimental research is presented to address the mechanics and failure mode of the interface between two matrices with brittle behavior, earth and mortar, and pig hair, an organic fiber that is a massive waste from the food industry worldwide. A comprehensive statistical analysis of the pull-out force is presented, accounting for the effect of fiber embedded length, diameter variability, and age of the matrices. Experimental results are contrasted with fracture-mechanics theories to describe its behavior in this matter. Results show that neither fiber length, variability of diameter, nor the age of the matrix influences the pull-out force of both matrices evaluated in this work. Our results show the brittle nature of these interfaces, which was also observed using a high-speed camera. The tensile load of the fibers was compared to the pull-out force, showing that these fibers always work within their elastic regime. This work contributes directly to the sustainable goals 9, 11, and 15 enacted by the United Nations in 2015, by contributing to the understanding of the fracture mechanics of a waste product used as reinforcement of construction matrices.
|
|
|
Antilen, J., Casassus, S., Cieza, L. A., & Gonzalez-Ruilova, C. (2023). Gas distribution in ODISEA sources from ALMA long-baseline observations in (CO)-C-12(2-1). Mon. Not. Roy. Astron. Soc., 522(2), 2611–2627.
Abstract: The (CO)-C-12 rotational lines in protoplanetary discs are good tracers of the total spatial extension of the gas component, and potentially planet-disc interactions. We present ALMA long baseline observations of the (CO)-C-12(2-1) line of 10 protoplanetary discs from the Ophiuchus DIsc Survey Employing ALMA (ODISEA) project, aiming to set constraints on the gas distribution of these sources. The position angle of the gaseous disc can be inferred for five sources using high-velocity channels, which trace the gas in the inner part of the disc. We compare the high-velocity PAs to the orientations inferred from the continuum, representative of the orientation over similar to 53 to 256 au in these resolved discs. We find a significant difference in orientation for DoAr 44, which is evidence of a tilted inner disc. Eight discs show evidence of gas inside inner dust cavities or gaps, and the disc of ISO-Oph 196 is not detected in (CO)-C-12(2-1), except for the compact signal located inside its dust cavity. Our observations also point out a possible outflow in WLY 2-63.
|
|
|
Arango Hoyos, B. E., Franco Osorio, H., Valencia Gomez, E. K., Guerrero Sanchez, J., Del Canto Palominos, A. P., Larrain, F. A., et al. (2023). Exploring the capture and desorption of CO2 on graphene oxide foams supported by computational calculations. Sci. Rep., 13(1), 14476.
Abstract: In the last decade, the highest levels of greenhouse gases (GHG) in the atmosphere have been recorded, with carbon dioxide (CO2) being one of the GHGs that most concerns mankind due to the rate at which it is generated on the planet. Given its long time of permanence in the atmosphere (between 100 to 150 years); this has deployed research in the scientific field focused on the absorption and desorption of CO2 in the atmosphere. This work presents the study of CO2 adsorption employing
materials based on graphene oxide (GO), such as GO foams with different oxidation percentages (3.00%, 5.25%, and 9.00%) in their structure, obtained via an environmentally friendly method. The characterization of CO2 adsorption was carried out in a closed system, within which were placed the GO foams and other CO2 adsorbent materials (zeolite and silica gel). Through a controlled chemical reaction, production of CO2 was conducted to obtain CO2 concentration curves inside the system and calculate from these the efficiency, obtained between 86.28 and 92.20%, yield between 60.10 and 99.50%, and effectiveness of CO2 adsorption of the materials under study. The results obtained suggest that GO foams are a promising material for carbon capture and the future development of a new clean technology, given their highest CO2 adsorption efficiency and yield.
|
|
|
Araya, H., & Plaza-Vega, F. (2023). Parameter estimation for fractional power type diffusion: A hybrid Bayesian-deep learning approach. Commun. Stat.-Theory Methods, Early Access.
Abstract: In this article, we consider the problem of parameter estimation in a power-type diffusion driven by fractional Brownian motion with Hurst parameter in (1/2,1). To estimate the parameters of the process, we use an approximate bayesian computation method. Also, a particular case is addressed by means of variations and wavelet-type methods. Several theoretical properties of the process are studied and numerical examples are provided in order to show the small sample behavior of the proposed methods.
|
|
|
Araya, H., Bahamonde, N., Fermin, L., Roa, T., & Torres, S. (2023). ON THE CONSISTENCY OF LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE JITTERED CASE. Stat. Sin., 33(1), 331–351.
Abstract: In numerous applications, data are observed at random times. Our main purpose is to study a model observed at random times that incorporates a longmemory noise process with a fractional Brownian Hurst exponent H. We propose a least squares estimator in a linear regression model with long-memory noise and a random sampling time called “jittered sampling”. Specifically, there is a fixed sampling rate 1/N, contaminated by an additive noise (the jitter) and governed by a probability density function supported in [0, 1/N]. The strong consistency of the estimator is established, with a convergence rate depending on N and the Hurst exponent. A Monte Carlo analysis supports the relevance of the theory and produces additional insights, with several levels of long-range dependence (varying the Hurst index) and two different jitter densities.
|
|
|
Araya, H., Bahamonde, N., Fermin, L., Roa, T., & Torres, S. (2023). ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE. Stat. Sin., 33(1), 1–26.
Abstract: In this study, we prove the strong consistency of the least squares estimator in a random sampled linear regression model with long-memory noise and an independent set of random times given by renewal process sampling. Additionally, we illustrate how to work with a random number of observations up to time T = 1. A simulation study is provided to illustrate the behavior of the different terms, as well as the performance of the estimator under various values of the Hurst parameter H.
|
|
|
Arias-Garzón, D., Tabares-Soto, R., Bernal-Salcedo. J., & Ruz, G. A. (2023). Biases associated with database structure for COVID-19 detection in X-ray images. Sci. Rep., 13, 3477.
Abstract: Several artificial intelligence algorithms have been developed for COVID-19-related topics. One that has been common is the COVID-19 diagnosis using chest X-rays, where the eagerness to obtain early results has triggered the construction of a series of datasets where bias management has not been thorough from the point of view of patient information, capture conditions, class imbalance, and careless mixtures of multiple datasets. This paper analyses 19 datasets of COVID-19 chest X-ray images, identifying potential biases. Moreover, computational experiments were conducted using one of the most popular datasets in this domain, which obtains a 96.19% of classification accuracy on the complete dataset. Nevertheless, when evaluated with the ethical tool Aequitas, it fails on all the metrics. Ethical tools enhanced with some distribution and image quality considerations are the keys to developing or choosing a dataset with fewer bias issues. We aim to provide broad research on dataset problems, tools, and suggestions for future dataset developments and COVID-19 applications using chest X-ray images.
|
|
|
Arulraj, A., Murugesan, P. K., Rajkumar, C., Zamorano, A. T., & Mangalaraja, R. V. (2023). Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies, 16(4), 1669.
Abstract: The research on renewable energy is actively looking into electrocatalysts based on transition metal chalcogenides because nanostructured electrocatalysts support the higher intrinsic activity for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). A major technique for facilitating the conversion of renewable and sustainable energy is electrochemical water splitting. The aim of the review is to discuss the revelations made when trying to alter the internal and external nanoarchitectures of chalcogenides-based electrocatalysts to enhance their performance. To begin, a general explanation of the water-splitting reaction is given to clarify the key factors in determining the catalytic performance of nanostructured chalcogenides-based electrocatalysts. To delve into the many ways being employed to improve the HER's electrocatalytic performance, the general fabrication processes utilized to generate the chalcogenides-based materials are described. Similarly, to enhance the OER performance of chalcogenides-based electrocatalysts, the applied complementary techniques and the strategies involved in designing the bifunctional water-splitting electrocatalysts (HER and OER) are explained. As a conclusive remark, the challenges and future perspectives of chalcogenide-based electrocatalysts in the context of water splitting are summarized.
|
|
|
Arunachalam, K. P., Avudaiappan, S., Flores, E. I. S., & Parra, P. F. (2023). Experimental Study on the Mechanical Properties and Microstructures of Cenosphere Concrete. Materials, 16(9), 3518.
Abstract: The most valuable components of coal fly ash are cenospheres. Cenospheres are hollow spherical particles produced during the coal-burning processes. As a result of their excellent characteristics, such as high workability, high heat resistance, low bulk density, and high strength, cenospheres can be used in the manufacturing of lightweight cement concrete. The research efforts and outcomes are to produce long-lasting cement-based lightweight concrete (LWC) composites with good mechanical properties. The novelty of this investigation is to determine the cement concrete strength when silica fume (SF) and cenospheres (CS) were used as a replacement for cement. Throughout the experiments, a consistent substitution of 12% silica fume was incorporated into cement mass. Silica is used as a micro filler and pozzolanic reactant to strengthen concrete. The concrete mixtures were tested to ensure they met the requirements of the lightweight concrete in terms of their mechanical, physical, and durability qualities. According to the findings, lightweight concrete standards were met, and environmental sustainability was improved with the use of these mix proportions. Concrete specimen's self-weight decreases by 35% with 30% cenosphere as a replacement. The micrograph shows the lack of portlandite is filled by mullite and other alumino silicates from the cenosphere. In order to achieve sustainability in concrete manufacturing, these mixtures can be suggested for the making of structural LWC that makes use of a large volume of industrial waste while conserving cement and natural resources.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2023). Time-domain supersymmetry for massless scalar and electromagnetic fields in anisotropic cosmologies. Phys. Scr., 98(10), 105302.
Abstract: It is shown that any cosmological anisotropic model produces supersymmetric theories for both massless scalar and electromagnetic (abelian) fields. This supersymmetric theory is the time-domain analogue of a supersymmetric quantum mechanics algebra theory. In this case, the variations of the anisotropic scale factors of the Universe are responsible for triggering the supersymmetry. For scalar fields, the superpartner fields evolve in two different cosmological scenarios (Universes). On the other hand, for propagating electromagnetic fields, supersymmetry is manifested through its polarization degrees of freedom in one Universe. In this case, polarization degrees of freedom of electromagnetic waves, which are orthogonal to its propagation direction, become superpartners from each other. This behavior can be measured, for example, through the rotation of the plane of polarization of cosmological light.
|
|
|
Ashina, C., Pugazhenthiran, N., Sathishkumar, P., Selvaraj, M., Assiri, M. A., Rajasekaran, C., et al. (2023). Ultra-small Ni@NiFe2O4/TiO2 magnetic nanocomposites activated peroxymonosulphate for solar light-driven photocatalytic mineralization of Simazine. J. Environ. Chem. Eng., 11(6), 111342.
Abstract: In the heterogeneous photocatalytic degradation of environmental contaminants the recovery, reuse of employed nanocatalyst was crucial and it is essentially required for the scale up applications. Besides, designing a magnetic material with heterojunction that can effectively oxidize the toxic organic contaminants to non-toxic substance under different reaction conditions including direct solar light irradiation remains a challenge. Considering the above facts, herein, we tailored heterojunction between the magnetic materials and non-magnetic materials with ultra-small Ni nanoparticles modified NiFe2O4/TiO2 nanostructures (Ni@NiFe2O4/TiO2 magnetic nanocomposites) through a simple sonochemical route. The Raman phonons at similar to 540 cm(-1) consistent to nickel metal nanoparticles and the spinel ferrites crystal structure confirmed the formation of Ni@NiFe2O4/TiO2 magnetic nanocomposites. The reduced optical bandgap of the resulting nanocomposites indicated the effective absorption of direct solar light irradiation when compared to the bare TiO2. Thus in-turn, enhanced the photocatalytic efficiency of simazine degradation in the presence of Ni@NiFe2O4/TiO2 magnetic nanocomposites (k= 11.0 x 10(-4) s(-1)) and augmented the activation of peroxymonosulphate (PMS) in the presence of Ni@NiFe2O4/TiO2 magnetic nanocomposites (k= 32.5 x 10(-4) s(-1)). Ni@NiFe2O4/TiO2 +PMS exhibited 3 folds enhanced efficiency in the presence of sunlight. The as-prepared NiFe2O4/TiO2 magnetic nanocatalysts were more stable and the efficiency of simazine oxidation was approximately same for the continuous five cycles at the optimized experimental conditions. The Ni@NiFe2O4/TiO2 magnetic nanocomposites preparation and the activation of PMS may promise the applications in an efficient wastewater treatment.
|
|
|
Avudaiappan, S., Cendoya, P., Arunachalam, K. P., Maureira-Carsalade, N., Canales, C., Amran, M., et al. (2023). Innovative Use of Single-Use Face Mask Fibers for the Production of a Sustainable Cement Mortar. J. Compos. Sci., 7(6), 214.
Abstract: Due to the COVID-19 epidemic, biomedical waste management has overwhelmed both developed and developing nations. It is now a critical issue that has to be addressed with minimal possible adverse impact on the environment. This study introduced a technique of recycling face masks into polypropylene fibers for use in concrete. This proposed recycling process provides complete disinfection of contaminated clinical waste and offers the opportunity to transform the characteristics of an end product. Microfibers manufactured from recycled medical masks were subjected to testing. According to the results, polypropylene is the primary component of this research program. Two batches of concrete were made, one with the inclusion of masks as polypropylene fibers and another that performed as a control mix. The modified mortar was compared to the control mix in split tensile, flexure, compressive strength, and water absorption. Compressive strength was found to be improved by about 17%, and tensile strength to be increased by around 22% when mask fibers were incorporated. This research introduced a novel approach for disposing of waste masks and established the preliminary viability of upcycling trash face masks towards mortar concrete production.
|
|