Acuna, J. A., Cantarino, D., Martinez, R., & Zayas-Castro, J. L. (2024). A two-stage stochastic game model for elective surgical capacity planning and investment. Socio-Econ. Plan. Sci., 91, 101786.
Abstract: Waiting for elective procedures has become a major health concern in both rich and poor countries. The inadequate balance between the demand for and the supply of health services negatively affects the quality of life, mortality, and government appraisal. This study presents the first mathematical framework shedding light on how much, when, and where to invest in health capacity to end waiting lists for elective surgeries. We model the healthcare system as a two-stage stochastic capacity expansion problem where government investment decisions are represented as a non-symmetric Nash bargaining solution. In particular, the model assesses the capacity requirements, optimal allocation, and corresponding financial investment per hospital, region, specialty, and year. We use the proposed approach to target Chile's elective surgical waiting lists (2021- 2031), considering patients' priorities, 10 regional health services, 24 hospitals, and 10 surgical specialties. We generate uncertain future demand scenarios using historical data (2012-2021) and 100 autoregressive integrated moving average prediction models. The results indicate that USD 3,331.677 million is necessary to end the waiting lists by 2031 and that the Nash approach provides a fair resource distribution with a 6% efficiency loss. Additionally, a smaller budget (USD 2,000 million) was identified as necessary to end the waiting lists in a longer planning horizon. Further analysis revealed the impact of investment in patient transfer and a decline in investment yield.
|
Almenara, J. M., Bonfils, X., Bryant, E. M., Jordan, A., Hebrard, G., Martioli, E., et al. (2024). TOI-4860 b, a short-period giant planet transiting an M3.5 dwarf. Astron. Astrophys., 683, A166.
Abstract: We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R-* = 0.358 +/- 0.015 R-circle dot, M-* = 0.340 +/- 0.009 M-circle dot). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 +/- 0.03 R-J and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 +/- 0.12) and measured the mass of the planet (0.273 +/- 0.006 M-J). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 M-E) found around mid to late M dwarfs (<0.4 R-circle dot), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 +/- 0.09) with an orbital period of 427 +/- 7 days and a minimum mass of 1.66 +/- 0.26 M-J, but additional data would be needed to confirm this.
|
Asenjo, F. A. (2024). Accelerating self-modulated nonlinear waves in weakly and strongly magnetized relativistic plasmas. J. Plasma Phys., 30(1).
Abstract: It is known that a nonlinear Schrodinger equation describes the self-modulation of a large amplitude circularly polarized wave in relativistic electron-positron plasmas in the weakly and strongly magnetized limits. Here, we show that such an equation can be written as a modified second Painleve equation, producing accelerated propagating wave solutions for those nonlinear plasmas. This solution even allows the plasma wave to reverse its direction of propagation. The acceleration parameter depends on the plasma magnetization. This accelerating solution is different to the usual soliton solution propagating at constant speed.
|
Asenjo, F. A., Hojman, S. A., Linnemann, N., & Read, J. (2024). Abnormal light propagation and the underdetermination of theory by evidence in astrophysics. Ann. Phys., 460, 169552.
Abstract: We investigate the propagation of certain non -plane wave solutions to Maxwell's equations in both flat and curved spacetimes. We find that such solutions (or rather parts of them) exhibit accelerative behaviour, and in particular do not propagate on straight lines. Having established these results, we then turn to their conceptual significance-which, in brief, we take to be the following: (i) one should not assume that the part of electromagnetic waves from outer space that is subject to detection is localised onto null trajectories; therefore (ii) astrophysicists and cosmologists should at least be wary about making such assumptions in their inferences from obtained data, for to do so may lead to incorrect inferences regarding the nature of our universe.
|
Asenjo, F. A., Hojman, S. A., Villegas-Martinez, B. M., Moya-Cessa, H. M., & Soto-Eguibar, F. (2024). Supersymmetric behavior of polarized electromagnetic waves in anisotropic media. Mod. Phys. Lett. A, 39(06), 2450013.
Abstract: A medium with specific anisotropic refractive indices can induce a supersymmetric behavior in the propagation of polarized electromagnetic waves, in an analog fashion to a quantum mechanical system. The polarizations of the wave are the ones which behave as superpartners from each other. For this to happen, the anisotropy of the medium must be transverse to the direction of propagation of the wave, with different refractive indices along the direction of each polarization, being in this way a biaxial medium. These refractive indices must be complex and follow a very specific relation in order to trigger the supersymetric response of the electromagnetic wave, each of them with spatial dependence on the longitudinal (propagation) direction of the wave. In this form, in these materials, different polarized light can be used to test supersymmetry in an optical fashion.
|
Attard, M., & Balbontin, C. (2024). Workshop 6 report: Micromobility movement in urban transport. Res. Transp. Econ., 103, 101399.
Abstract: The theme of micromobility was introduced for the first time in Thredbo 17 as the growth of shared and privately-owned e-scooters, bicycles and e-bicycles continue to affect the nature and structure of urban transport systems worldwide. And whilst in some cases they challenge the priority afforded to the private car, in others they complement already existing and well-established greener transport modes such as cycling and walking. The discussion in this workshop focused on a number of questions looking at the benefits of micromobility and discussing the main incentives for their use as an urban mode of transport, questioning the role of government and describing the potential threats, if any, to public transport systems, in what we expect for the future of micromobility. Five papers showcased evidence on the use of micromobility, from e-scooters in Norway and Australia, to public bicycles in South Korea and The Netherlands. Each of the questions discussed in the workshop is reported in this paper. The need for multimodal integration is evident and remains essential to ensure complementarity across transport in cities. However, other concerns such as the need for regulation, education/ enforcement structures, stronger business models and more effective tendering procedures have been identified and discussed. A long list of future research topics in the area of micromobility is provided and some themes for Thredbo 18 are recommended.
|
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Miralles, D. G., Beck, H. E., Siegmund, J. F., Alvarez-Garreton, C., et al. (2024). On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes. Hydrol. Earth Syst. Sci., 28(6), 1415–1439.
Abstract: There is a wide variety of drought indices, yet a consensus on suitable indices and temporal scales for monitoring streamflow drought remains elusive across diverse hydrological settings. Considering the growing interest in spatially distributed indices for ungauged areas, this study addresses the following questions: (i) What temporal scales of precipitation-based indices are most suitable to assess streamflow drought in catchments with different hydrological regimes? (ii) Do soil moisture indices outperform meteorological indices as proxies for streamflow drought? (iii) Are snow indices more effective than meteorological indices for assessing streamflow drought in snow-influenced catchments? To answer these questions, we examined 100 near-natural catchments in Chile with four hydrological regimes, using the standardised precipitation index (SPI), standardised precipitation evapotranspiration index (SPEI), empirical standardised soil moisture index (ESSMI), and standardised snow water equivalent index (SWEI), aggregated across various temporal scales. Cross-correlation and event coincidence analysis were applied between these indices and the standardised streamflow index at a temporal scale of 1 month (SSI-1), as representative of streamflow drought events. Our results underscore that there is not a single drought index and temporal scale best suited to characterise all streamflow droughts in Chile, and their suitability largely depends on catchment memory. Specifically, in snowmelt-driven catchments characterised by a slow streamflow response to precipitation, the SPI at accumulation periods of 12-24 months serves as the best proxy for characterising streamflow droughts, with median correlation and coincidence rates of approximately 0.70-0.75 and 0.58-0.75, respectively. In contrast, the SPI at a 3-month accumulation period is the best proxy over faster-response rainfall-driven catchments, with median coincidence rates of around 0.55. Despite soil moisture and snowpack being key variables that modulate the propagation of meteorological deficits into hydrological ones, meteorological indices are better proxies for streamflow drought. Finally, to exclude the influence of non-drought periods, we recommend using the event coincidence analysis, a method that helps assessing the suitability of meteorological, soil moisture, and/or snow drought indices as proxies for streamflow drought events.
|
Caamaño-Carrillo, C., Bevilacqua, M., López, C., & Morales-Oñate, V. (2024). Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation. Comput. Stat. Data Anal., 191, 107887.
Abstract: A highly scalable method for (non-)Gaussian random fields estimation is proposed. In particular, a novel (a) symmetric weight function based on nearest neighbors for the method of maximum weighted composite likelihood based on pairs (WCLP) is studied. The new weight function allows estimating massive (up to millions) spatial datasets and improves the statistical efficiency of the WCLP method using symmetric weights based on distances, as shown in the numerical examples. As an application of the proposed method, the estimation of a novel non-Gaussian random field named Tukey-hh random field that has flexible marginal distributions (possibly skewed and/or heavy-tailed) is considered. In an extensive simulation study the statistical efficiency of the proposed nearest neighbors WCLP method with respect to the WCLP method using weights based on distances is explored when estimating the parameters of the Tukey-hh random field. In the Gaussian case the proposed method is compared with the Vecchia approximation from computational and statistical viewpoints. Finally, the effectiveness of the proposed methodology is illustrated by estimating a large dataset of mean temperatures in South -America. The proposed methodology has been implemented in an open-source package for the R statistical environment.
|
Carleo, I., Malavolta, L., Desidera, S., Nardiello, D., Wang, S., Turrini, D., et al. (2024). The GAPS programme at TNG. Astron. Astrophys., 682, A135.
Abstract: Context. Different theories have been developed to explain the origins and properties of close-in giant planets, but none of them alone can explain all of the properties of the warm Jupiters (WJs, Porb = 10-200 days). One of the most intriguing characteristics of WJs is that they have a wide range of orbital eccentricities, challenging our understanding of their formation and evolution. Aims. The investigation of these systems is crucial in order to put constraints on formation and evolution theories. TESS is providing a significant sample of transiting WJs around stars bright enough to allow spectroscopic follow-up studies. Methods. We carried out a radial velocity (RV) follow-up study of the TESS candidate TOI-4515 b with the high-resolution spectrograph HARPS-N in the context of the GAPS project, the aim of which is to characterize young giant planets, and the TRES and FEROS spectrographs. We then performed a joint analysis of the HARPS-N, TRES, FEROS, and TESS data in order to fully characterize this planetary system. Results. We find that TOI-4515 b orbits a 1.2 Gyr-old G-star, has an orbital period of Pb = 15.266446 +/- 0.000013 days, a mass of Mb = 2.01 +/- 0.05 MJ, and a radius of Rb = 1.09 +/- 0.04 RJ. We also find an eccentricity of e = 0.46 +/- 0.01, placing this planet among the WJs with highly eccentric orbits. As no additional companion has been detected, this high eccentricity might be the consequence of past violent scattering events.
|
Chadwick, C., Babonneau, F., Homem-de-Mello, T., & Letelier, A. (2024). Synthetic Simulation of Spatially-Correlated Streamflows: Weighted-Modified Fractional Gaussian Noise. Water Resour. Res., 60(2), e2023WR035371.
Abstract: Stochastic methods have been typically used for the design and operations of hydraulic infrastructure. They allow decision makers to evaluate existing or new infrastructure under different possible scenarios, giving them the flexibility and tools needed in decision making. In this paper, we present a novel stochastic streamflow simulation approach able to replicate both temporal and spatial dependencies from the original data in a multi-site basin context. The proposed model is a multi-site extension of the modified Fractional Gaussian Noise (mFGN) model which is well-known to be efficient to maintain periodic correlation for several time lags, but presents shortcomings in preserving the spatial correlation. Our method, called Weighted-mFGN (WmFGN), incorporates spatial dependency into streamflows simulated with mFGN by relying on the Cholesky decomposition of the spatial correlation matrix of the historical streamflow records. As the order in which the decomposition steps are performed (temporal then spatial, or vice-versa) affects the performance in terms of preserving the temporal and spatial correlation, our method searches for an optimal convex combination of the resulting correlation matrices. The result is a Pareto-curve that indicates the optimal weights of the convex combination depending on the importance given by the user to spatial and temporal correlations. The model is applied to a number of river basins in Chile, where the results show that the WmFGN approach maintains the qualities of the single-site mFGN, while significantly improving spatial correlation.
|
Chaigneau, S. E., Marchant, N., Canessa, E., & Aldunate, N. (2024). A mathematical model of semantic access in lexical and semantic decisions. Lang. Cogn., Early Access.
Abstract: In this work, we use a mathematical model of the property listing task dynamics and test its ability to predict processing time in semantic and lexical decision tasks. The study aims at exploring the temporal dynamics of semantic access in these tasks and showing that the mathematical model captures essential aspects of semantic access, beyond the original task for which it was developed. In two studies using the semantic and lexical decision tasks, we used the mathematical model's coefficients to predict reaction times. Results showed that the model was able to predict processing time in both tasks, accounting for an independent portion of the total variance, relative to variance predicted by traditional psycholinguistic variables (i.e., frequency, familiarity, concreteness imageability). Overall, this study provides evidence of the mathematical model's validity and generality, and offers insights regarding the characterization of concrete and abstract words.
|
Chang, Y. C., Larrain, F. A., Fuentes-Hernandez, C., Park, Y., & Kippelen, B. (2024). Solution-based electrical doping of organic photovoltaics with non-fullerene acceptors facilitated by solvent vapor pre-treatment. AIP Advances, 14(1), 015247.
Abstract: Solution-based electrical doping of organic semiconductors using 12-molybdophosphoric acid (PMA) hydrate has been shown to allow p-type doping of conjugated polymers over a limited depth from the surface, enabling the fabrication of organic solar cells with a simplified device architecture. However, the doping level of certain conjugated polymers using PMA was found to be limited by the polymer film volume. Here, we report a modified PMA doping technique based on film volume expansion that is applicable to device fabrication, leading to hole-collecting layer-free non-fullerene organic photovoltaic devices, which exhibit a comparable photovoltaic performance to those with a commonly evaporated MoO3 hole-collecting layer. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(http://creativecommons.org/licenses/by/4.0/).
|
Cisternas, J., & Concha, A. (2024). Searching nontrivial magnetic equilibria using the deflated Newton method. Chaos Solitons Fractals, 179, 114468.
Abstract: Nonlinear systems that model physical experiments often have many equilibrium configurations, and the number of these static solutions grows with the number of degrees of freedom and the presence of symmetries. It is impossible to know a priori how many equilibria exist and which ones are stable or relevant, therefore from the modeler's perspective, an exhaustive search and symmetry classification in the space of solutions are necessary. With this purpose in mind, the method of deflation (introduced by Farrell as a modification of the classic Newton iterative method) offers a systematic way of finding every possible solution of a set of equations. In this contribution we apply deflated Newton and deflated continuation methods to a model of macroscopic magnetic rotors, and find hundreds of new equilibria that can be classified according to their symmetry. We assess the benefits and limitations of the method for finding branches of solutions in the presence of a symmetry group, and explore the high -dimensional basins of attraction of the method in selected 2 -dimensional sections, illustrating the effect of deflation on the convergence.
|
Correa, N., Cuevas, J., Fuentes, A., Torero, J. L., & Reszka, P. (2024). Understanding the effect of char oxidation on wood temperature profiles for varying heating and oxygen conditions. Fire Saf. J., 142, 104049.
Abstract: The use of mass timber framing as a sustainable material, particularly in high-rise buildings, requires detailed structural fire performance calculations. Thermal models describing only the solid phase are cost-effective alternatives to provide information to structural behavior models. Their accuracy depends on an adequate description of drying, pyrolysis, charring and eventually flaming phenomena. While in recent years there have been considerable contributions to the development of such models, there are still open questions. This work proposes a thermal model which incorporates char oxidation, describing both the kinetic-and diffusion controlled regimes. The model was used to replicate two sets of experimental results which used standard fire calorimeters to study the ignition of thick wood specimens within a range of incident heat fluxes and oxygen concentrations, respectively. The model yields adequate temperature predictions in the early heating stages, but fails to replicate the behavior at later stages, when the effect of the surface combustion is noticeable. In terms of mass loss rates, a poorer performance is observed. To change from one oxidation regime to another, a Damkohler number is proposed, based on char oxidation reaction rates. It is found that for compartment fire conditions, char oxidation will mostly occur develop under diffusion-controlled conditions.
|
Franchi, O., Alvarez, M. I., Pavissich, J. P., Belmonte, M., Pedrouso, A., del Rio, A. V., et al. (2024). Operational variables and microbial community dynamics affect granulation stability in continuous flow aerobic granular sludge reactors. J. Water Process Eng., 59, 104951.
Abstract: Retrofitting wastewater treatment plants with continuous aerobic granular sludge reactors is a promising alternative to enhance treatment capacities and reduce footprint. This study investigates the main variables influencing granulation and microbial dynamics in two reactor configurations (25 L): stirred tanks in series (R1) and a plug-flow-like system (R2). Granule formation was achieved by increasing the organic loading rate (OLR) from 0.7 to 4.1 kg COD/(m3 & sdot;d) and the up-flow velocity in the biomass selector from 1.4 to 6.9 m/h. However, irreversible granule destabilization occurred at day 68 for R1 and day 108 for R2. Principal component analysis and examination of food-to-microorganisms (F/M) ratio medians identified the F/M ratio as the primary variable associated with instability. Microbial analysis revealed that a high F/M ratio induced significant increases in the abundance of specific genera such as Arcobacter, Cloacibacterium, Rikenella, Aquaspirillum and Sphaerotillus, whose overgrowth may negatively impact granule stability. Based on these findings, maximum F/M ratio thresholds were obtained to establish operational conditions allowing the maintenance of stable aerobic granules on continuous flow reactor configurations.
|
Heredia, C., Moreno, S., & Yushimito, W. (2024). ODMeans: An R package for global and local cluster detection for Origin–Destination GPS data. SoftwareX, 26, 101732.
Abstract: The ODMeans R package implements the OD-Means model, a two-layer hierarchical clustering algorithm designed for extracting both global and local travel patterns from Origin–Destination Pairs (OD-Pairs). In contrast to existing models, OD-Means automates cluster determination and offers advantages such as smaller Within-Cluster Distance (WCD) and dual hierarchies. The package includes functions for applying the model and visualizing the results on maps. Using real taxi data from Santiago, Chile, we demonstrate the package’s capabilities, showcasing its flexibility and impact on understanding urban mobility patterns.
|
Hernandez-Rocha, C., Chahuan, J., Uslar, T., Salas, R., Sepúlveda, I., Pavez, C., et al. (2024). Relative survival and cause-specific mortality of a Chilean Inflammatory Bowel Disease cohort. In Journal of Crohns and Colitis (Vol. 18, p. I2016).
|
Hojman, S. A., & Asenjo, F. A. (2024). Cosmological electromagnetic Hopfions. Phys. Scr., 99(5), 055514.
Abstract: It is shown that any mathematical solution for null electromagnetic field knots in flat spacetime is also a null field knotted solution for cosmological electromagnetic fields. This is obtained by replacing the time t -> tau = integral dt/a, where a = a(t) is the scale factor of the Universe described by the Friedman-Lemaitre-Robertson-Walker (FLRW) cosmology, and by adequately rewriting the (empty flat spacetimes) electromagnetic fields solutions in a medium defined by the FLRW metric. We found that the dispersion (evolution) of electromagnetic Hopfions is faster on cosmological scenarios. We discuss the implications of these results for different cosmological models.
|
Holguin-Garcia, S. A., Guevara-Navarro, E., Daza-Chica, A. E., Patiño-Claro, M. A., Arteaga-Arteaga, H. B., Ruz, G. A., et al. (2024). A comparative study of CNN-capsule-net, CNN-transformer encoder, and Traditional machine learning algorithms to classify epileptic seizure. BMC Med. Inform. Decis. Mak., 24(1), 60.
Abstract: IntroductionEpilepsy is a disease characterized by an excessive discharge in neurons generally provoked without any external stimulus, known as convulsions. About 2 million people are diagnosed each year in the world. This process is carried out by a neurological doctor using an electroencephalogram (EEG), which is lengthy.MethodTo optimize these processes and make them more efficient, we have resorted to innovative artificial intelligence methods essential in classifying EEG signals. For this, comparing traditional models, such as machine learning or deep learning, with cutting-edge models, in this case, using Capsule-Net architectures and Transformer Encoder, has a crucial role in finding the most accurate model and helping the doctor to have a faster diagnosis.ResultIn this paper, a comparison was made between different models for binary and multiclass classification of the epileptic seizure detection database, achieving a binary accuracy of 99.92% with the Capsule-Net model and a multiclass accuracy with the Transformer Encoder model of 87.30%.Conclusion Artificial intelligence is essential in diagnosing pathology. The comparison between models is helpful as it helps to discard those that are not efficient. State-of-the-art models overshadow conventional models, but data processing also plays an essential role in evaluating the higher accuracy of the models.
|
Jones, M. I., Reinarz, Y., Brahm, R.., Tala Pinto, M., Eberhardt, J., Rojas, F., et al. (2024). A long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS. Astron. Astrophys., 683, A192.
Abstract: We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow-up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant in the transition between the super-Jupiters and brown dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480(-0.0005)(+0.0004) d, M-p = 12.74(-1.01)(+1.01) M-J, R-p = 1.026(-0.067)(+0.065) R-J and e = 0.018(-0.004)(+0.004). In addition, the RV time series revealed a significant trend at the similar to 350 m s(-1) yr(-1) level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949(-0.0003)(+0.0003) d, M-p = 2.340(-0.195)(+0.197) M-J, R-p = 1.030(-0.050)(+0.050) R-J and e = 0.021(-0.015)(+0.024), making this object a new example of a growing population of transiting warm giant planets.
|